NO ONE KNOWS
BOARDS LIKE DIGI-KEY!

- Open Source Community Boards
- Evaluation and Development Boards
- Wireless Modules
- Single Board Computers
- Reference Designs
- Programmers, Emulators and Debuggers

DESIGNS START HERE!
DIGIKEY.COM/BOARDS

#MAKEWITHDIGIKEY
By now you will have noticed the free gift on the print edition of The MagPi. You may be wondering how useful a single strip of plastic can be? Very, very useful as it happens.

You see, back in issue 88, Gareth Halfacree tested a Raspberry Pi 4 with all the different firmware updates. This gave us an insight into just how important firmware was to the Raspberry Pi. But another thing came to light: Raspberry Pi 4 runs cooler when stood vertically.

Alex Bate, Raspberry Pi’s digital content manager, got to work on a design that’s now attached to the front cover. All is explained on page 6.

Do yourself a favour and unstick the Raspberry Pi 4 stand, then pop your Raspberry Pi 4 on its side and keep it vertical.

It turns out that keeping Raspberry Pi 4 cool enables it to run at full speed for longer and, crucially, this opens up a world of overclocking, where you try to squeeze ever more performance out of a Raspberry Pi. Our overclocking tutorial (page 34) explains all.

Raspberry Pi 4 has always been cool to us. But cool is fast in the world of computing, and this month we’re all about running Raspberry Pi as fast as possible.

Lucy Hattersley Editor
Contents

> Issue 90 > February 2020

Cover Feature

24 Magic mirror

Regulars

06 World of Raspberry Pi
92 Your letters
97 Next Month
98 The Final Word

Project Showcases

08 WeatherMan
12 DARVA: The Event Assistant
14 Heart-rate monitor
16 Audio radar
18 Tri-Lasers for Felines
20 Raspberry Pi Recovery Kit

DISCLAIMER: Some of the tools and techniques shown in The MagPi magazine are dangerous unless used with skill, experience, and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you are responsible for your own safety and understanding the limits of yourself and your equipment. Children should be supervised. Raspberry Pi (Trading) Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in The MagPi magazine. Laws and regulations covering many of the topics in The MagPi magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some manufacturers place limits on the use of their hardware which some projects or suggestions in The MagPi magazine may go beyond. It is your responsibility to understand the manufacturer’s limits.
Tutorials

34 Overclock Raspberry Pi 4
38 3D-print a keyring
42 Room guard
47 Pi Bakery: Hex-A-Pad
54 C & GTK Glade layout editor

The Big Feature

58 New Year projects!

Reviews

66 Thermal cases group test
74 Pirate Audio
76 RetroFlag GPi Case
78 Top 10 game making projects
80 Learn Python

Community

82 Pranjali Pathak interview
84 This month in Raspberry Pi
88 Events calendar

WIN ONE OF FIVE PROTODOCK ADD-ONS!
Heat is the enemy of computer efficiency, which is why a stand to keep Raspberry Pi 4 cool is a big deal. Rosie Hattersley meets its maker.

There’s a curious piece of plastic proudly affixed to the front cover of this month’s print edition of The MagPi magazine. The Raspberry Pi 4 Stand is an exclusively designed holder that does wonders for your computer’s efficiency. The stand holds up to three Raspberry Pi 4 computers at once, and has been met with open arms by overclocking maestros.

Issue 88 of The MagPi magazine included a thermal testing feature conclusively showing that running a Raspberry Pi 4 on its side enables it to run cooler, and therefore at full speed, for longer.

To try out this principle for yourself, turn to this issue’s overclocking tutorial on page 34.

If you’re reading the digital version of this article, you’ll be able to get your hands on your own Raspberry Pi 4 Stand. We’re making the files available for you to 3D-print or laser-cut your stand: find them on our GitHub page at magpi.cc/github.

Making a stand
Alex Bate is Raspberry Pi’s digital content manager and the stand’s inventor. “We were keen to design a system for securing Raspberry Pi on its side, allowing for greater airflow around the device,” she tells us. This increased airflow leads to improved cooling efficiency, which enables Raspberry Pi 4 to run optimally and makes it more receptive to overclocking.

“The original idea was the design itself,” says Alex. “It’s so simple that you could cut slots in a piece of cardboard and recreate the stand at home. We wanted to make the system as accessible as possible, [so offering it as a gift...
with) the magazine was the obvious choice. The idea of a gift, and the idea of having something this simple to recreate came hand in hand.”

This, in turn, led to the idea of making it a one-piece stand that was easy to cover-mount on the magazine, and easy for readers to reproduce with a 3D printer.

Made to measure

Alex began playing around with lengths and taking a lot of measurements of numerous Raspberry Pi 4 boards to determine the correct width for the slots (silicon can vary by a fraction of a millimetre). Eventually, the final design came to life.

The stand has small indentations on one side, which guide around the four Power over Ethernet (PoE) pins on one side of Raspberry Pi 4. “I was keen on making it as fool-proof as possible,” explains Alex, “and adding the PoE silhouette, I feel, makes it pretty obvious how you should use it.”

Alex says if you place a single Raspberry Pi in the middle slot, you’ll be surprised how cool your Raspberry Pi 4 runs. You can also build a small cluster with three perfectly cool Raspberry Pi boards.
Martin Mander is no stranger to repurposing outdated tech. “I started converting and upcycling vintage technology about ten years ago, after a brief stint blogging for Wired’s GeekDad column,” he tells us. Discovering he enjoyed documenting projects as much as building them, he began specialising in giving new purpose to broken old tech – “especially items I remember being ‘the latest thing’ during the 1970s and 1980s when I was a child.”

Martin became enamoured of all things Raspberry Pi-flavoured in 2014. Looking for a one-box alternative to a PC for converted gadgets, he was tipped off by a reader that Raspberry Pi might work. He duly made a Raspberry Pi-powered VCR. Numerous ‘fruitful’ projects followed. There’s now a sizeable archive at magpi.cc/oldtechprojects.

The Walkman, of course, fits that description to a tee. Sony alone sold 200 million, while other brands of cassette player were also legion.

I immediately fell in love with it... It had a great retro look

Press play
Martin’s chance to ‘rescue’ one came when his mother-in-law sent him a broken old Hitachi player that she found during a clear-out. “I immediately fell in love with it,” Martin recalls. “It had a great retro look that drew me in”. On closer examination he realised the window in

A shiny music box with a clear door for a screen proves an ideal upcycling candidate for an eighties tech fan keen to keep tabs on the weather. Rosie Hattersley hears more

WeatherMan

Martin Mander

Martin works in the Intelligence & Analytics Department at Norfolk County Council. He’s passionate about giving old tech a new lease of life, especially projects involving Raspberry Pi.

magpi.cc/oldtechprojects
At the first sign of rain, WeatherMan’s headphones begin to jiggle.

Sugru mouldable glue offered lots of control when refashioning the cassette player’s case and new components.

The more likely it is to rain, the more lights are lit on the LED matrix, which also shows the temperature.
I’d been looking for a small case to hold a weather display for my desk for a while. The cassette player’s door was – to the millimetre – the same size as a Raspberry Pi HAT. “At that point, all my other projects hit the back burner,” he says.

“I’d been looking for a small case to hold a weather display for my desk for a while, and this was the perfect thing. I also had an unused Unicorn HAT HD lying around and this seemed like the ideal project for it.” To this he added servos and an awful lot of Sugru – a sort of malleable glue.

“In the past I’ve used Lego and Meccano to put things together, but with space being so tight in the case, I used Sugru this time around. It’s very workable but sets hard like plastic, perfect for fixing components in the right place.”

“The WeatherMan currently relies on API data from the Dark Sky weather service, but Martin eventually hopes to link it up to a Raspberry Pi weather station. “With a Raspberry Pi at each end, it should hopefully be straightforward!” he says optimistically.

Getting the details right

The main aim for what became the WeatherMan project was to keep the exterior as true as possible to the original. He wanted it to look like an
ornamental piece sitting on his desk speaker, hiding a useful IoT (Internet of Things) device until it bursts into life.

Martin thought the tape player seemed a bit naked without the iconic eighties headphones, so he looked for ways to incorporate them into the build. He drilled out the original jack plug and fittings and joined them together using a 2 mm threaded rod. With a small nut on each end of the rod and a servo connector at the bottom, the headphones now respond whenever the weather is about to change. Their servo-controlled jiggling always makes Martin smile, even if it’s to alert him rain is on the way.

Helpfully, a Raspberry Pi Unicorn HAT is precisely the same size as the cassette player’s display window.

Diagram showing the relatively simple setup involved in creating the WeatherMan project.

Use Raspbian Buster and adapted Python scripts to retrieve weather data from Dark Sky, display info on the Unicorn HAT, and (optionally) jiggle the headphones. Scripts and a ReadMe are on GitHub at magpi.cc/ghweatherman.

Dismantle the cassette player to create as much space as you can inside. Retain any parts you want to reuse. You may need to trim down the case inside to make the components fit nicely.

You may need new bolts or a tiny magnet to make the cassette tape door close properly once you’ve tinkered inside. When you’re satisfied that it works well, hot-glue the cassette player case and door.

Dark Sky API
The easiest, most advanced, weather API on the web.

Easy to Use
Weather Conditions
Advanced Data
- Simple Toggles
- Connected: sunny, cloudy, rainy
- Forecast: wind, pressure, temperature
- Cutting-edge analysis: wind direction, pressure, temperature

Use Raspbian Buster and adapted Python scripts to retrieve weather data from Dark Sky, display info on the Unicorn HAT, and (optionally) jiggle the headphones. Scripts and a ReadMe are on GitHub at magpi.cc/ghweatherman.
While Brussels-based makers Dane and Nicole enjoy meeting people, they find that endlessly repeating the stories behind their projects at events can be exhausting. “We presented our tech projects at a number of events in the past year, and we noticed we kept repeating ourselves throughout the day, giving the same talks and same explanations over and over again to the people visiting our booth,” explains Dane. “Whilst it’s definitely fun to talk to so many people, it’s also very tiring and so we thought it would be great to create an assistant, of sorts, to do this repetitive work for us.”

Enter DARVA, a cute little animated robot who just loves to chat, and who runs off a Raspberry Pi 4. Dane says, “DARVA was made by first cutting and sewing all the separate parts of the robot out of felt. Then we took a picture of all these robot parts and cut them out using photo editing software […] To bring DARVA to life, we created a webpage (with HTML canvas and JavaScript) to which we added all these photographs and animated them.”

Over the period of a week or two, Dane and Nicole’s idea really took shape. The most difficult part of the project was the touchscreen orientation: “As the felt robot is standing upright, we thought it would be best to use the screen in portrait mode,” says Nicole. “Whilst you can easily change the screen rotation on Raspberry
The process of animation begins, after the pieces are cut out digitally using photo editing software. Pi, the touchscreen still worked in landscape mode; the mapping between where you touched the screen and where you clicked was wrong.” After a lot of trial and error, they decided to keep Raspberry Pi running in landscape and just rotated all the animations.

“They have worked hard to ensure that DARVA has a lifelike quality.”

Digital deputy

They have also worked hard to ensure that DARVA has a lifelike quality, and introduced a degree of randomness to the robot’s actions. “The gauge rotates to a random position, for example, and the eyes randomly look left or right for a random amount of time,” says Nicole. DARVA also loops through a series of texts that Dane and Nicole have written to give some more information about their booth at events, while some animations are activated by clicking or touching parts of the screen, including DARVA’s head and belly.

So, how have people reacted to their new digital sidekick? Dane tells us there was some initial confusion at one event: “We placed the original felt version of DARVA next to the touchscreen, because we thought it would be interesting to show how we went from a felt robot to a digital one. However, a lot of people thought the felt robot and the touchscreen were somehow connected and could interact, which was confusing because moving or touching the felt didn’t do anything.” However, DARVA has received a lot of compliments: “Kids especially loved the look and feel of it.”

Dane and Nicole are considering developing the project further. “Maybe we can make it a video game, or an interactive story, or connect the felt robot to the digital robot as many people expected,” says Nicole. “We have so many ideas, we hardly know what we eventually will end up making, but one thing is for sure: it will involve a Raspberry Pi!”

Quick **FACTS**

- The project took about 20 hours to complete
- Sewing the felt parts was the most time-consuming element
- Felt is a quick and cheap way to create in a range of shapes/colours
- The animations are run in Chromium
- DARVA is an acronym of ‘Digitized Analog Robot Virtual Assistant’
Our hearts often feel like they’re skipping a beat when we see the latest ingenious projects from the ever-talented Raspberry Pi community. With this project, however, we could go as far as viewing the actual effects they have on our ticker, since a trio of students at Queen Margaret’s School in York have worked on a heart-rate monitor using pHATs from Pimoroni and a pulse sensor.

When tasked with a developing a project during their Raspberry Pi classes, these students took the healthy option, as **David Crookes** explains:

Elena Lardies Lopez, Harriette Pemberton, and Myrtle Morley created the device as part of their computing lessons. The school teaches a unit called ‘Physical Computing with the Raspberry Pi’ module and the students learn about connecting electronic devices [and controlling them from] a Raspberry Pi computer before forming small groups and deciding on a physical project,” explains Jon Witts, the school’s director of digital strategy.

Revised plans

After deciding on their initial aims – to create a watch that could track and display the wearer’s step count and heart rate – the students began to plan. They had to break down the problem and research how they could make their project: from the programming involved, to how it would be physically developed, and the hardware that would be needed.

With the pulse sensor attached to a finger, the heart’s beats-per-minute can be read.

The environmental sensing board Enviro pHAT was able to collect data from the plug-and-play Pulse Sensor Amped.
“When the students saw the size of the Raspberry Pi Zero they would be using and the size of the pHATs involved, they quickly ruled out having the device as a watch,” Jon says. “Instead, the group focused on how they could combine two pHATs (the Enviro pHAT and the Scroll pHAT HD) to record data from an analogue pulse sensor and accelerometer data from the on-board sensors of the Enviro pHAT. The Scroll pHAT HD would be used to display the data recorded.”

The students learn about connecting electronic devices and controlling them from a Raspberry Pi

Jon says the pulse sensor – which fits over the forefinger and allows heartbeats to be measured – uses a simple three-resistor voltage divider to drop its output voltage to 3V. This is then fed into one of the analogue pins on the Enviro pHAT.

Stepping up
As for the steps counter, the accelerometer data is taken from the Enviro pHAT’s on-board sensors. “These two data sources are then read into the students’ Python program and they’re displayed across the LEDs of the Scroll pHAT HD,” Jon adds. He says the design makes use of the fact that both the Enviro pHAT and Scroll pHAT HD are I²C devices with different registers for each pHAT.

“The students used a header with extra-long pins to solder to the Enviro pHAT; this meant that the Scroll pHAT HD could then be ‘stacked’ on top of the Enviro pHAT, effectively chaining up multiple I²C devices.”

Given more time, Jon thinks the students could strive for greater accuracy: “The project could look at how to take the raw data from the accelerometer and accurately count steps with it, and also how to convert the high and low voltages recorded from the pulse sensor into a count of heartbeats per minute.”

But it has taught valuable lessons in project originality and creativity along with teamwork, problem-solving, and presentation skills. “Running this unit has proven that the Raspberry Pi is a great device for teaching physical computing and the students take to it with enthusiasm,” Jon says.

Quick FACTS

> A Raspberry Pi Zero is at its heart
> The project cost less than £100
> It displays to a Scroll pHAT HD
> The students made use of Python
> Enviro pHAT measures tri-axis motion
Audio radar

Making radar technology accessible to students with help from Raspberry Pi

It’s well-documented that Raspberry Pi was created to help get people into computing, interesting them in a way that many people were during the 1980s. Dewan Pieterse, formerly of the University of Cape Town, worked on a system to help school and other university students get interested in radar.

“The radar introduces the user in an easy and accessible way to electronics, [as well as] embedded systems and how radar detects return signals and performs filtering to measure radial velocity and distance to objects,” he explains.

The radar is based on a Raspberry Pi 3B which hosts a web server to enter the parameters needed by the radar to operate. “The web server can be accessed by connecting to the ‘RadarPi’ WiFi and starts to broadcast upon power-up,” says Dewan. “It is also used to display the results obtained after the radar was operated.”

What’s in a wavelength

Normal radar uses radio waves (it was originally an acronym for RAdio Detection And Ranging), however, this version employs 8 to 12kHz of noise to measure distance – using the reflection time of the sound – and velocity, by making use of the Doppler effect. Parameters can be modified on a webpage generated by Raspberry Pi, allowing students to see how different settings change the results.

“The radar proved to be a minor success in measurement of velocity, [although] with not the desired resolution and clarity due to the automatic gain of the microphone,” reveals Dewan. The automatic gain of the microphone automatically adjusts the received signals so that the signal never clips on the voltage range. When the velocity of a car is being measured, the microphone is overwhelmed by the road noise and the resulting plot is a quite faint line representing the velocity of the vehicle.

Dewan’s RadarPi software enables the user to enter radar parameters via an easy-to-use web interface.
For distance measurement, the radar proved to be a major success, with the only downside being the resolution of the plot.

“For distance measurement, the radar proved to be a major success,” he adds, “with the only downside being the resolution of the plot. When an object was measured at a set distance, the results would display the range ±10%. However, the known distance was always in the middle of the range and therefore a successful measurement. The reasons for the variation in distance was not investigated due to a time constraint, but initial tests proved that the automatic gain might be to blame.”

Accessible radar

Dewan’s system continues a long-running theme of projects involving radar, with this iteration trying to make it as open, affordable, and accessible as possible – which is why a Raspberry Pi was involved: “Raspberry Pi offered built-in wireless LAN and sufficient RAM capacity to host a web server,” says Dewan. “Other embedded systems, such as the STM32F04, were also considered, as a lot of previous work was done on this and the on-board analogue-to-digital (ADC) was also attractive. The STM and other Arduino-based systems had insufficient storage and RAM capacity, and therefore Raspberry Pi offered a superior solution.”

Quick FACTS

- QR codes are used to access Raspberry Pi
- Dewan has since graduated from UCT
- Ultrasonic sensors in robots use a similar system to detect distance
- Sonar uses sound, but is usually employed underwater
- Sound radars can also be known as SODAR (SOnic Detection And Ranging)
Xander the cat is a much-loved family pet, but as his owners live in a flat, he can get a little bored staying indoors when they’re out at work. Seeking a way to keep his cat entertained, Enzo Calogero came up with an ingenious Raspberry Pi-powered project. “We noticed that he loves to chase a laser light, so we decide to create a device to make laser games for him,” explains Enzo.

The result is the Tri-Lasers for Felines device which, when the cat’s presence is detected by a PIR motion sensor, beams a laser dot around the room for Xander to chase between randomly generated points. Judging by the video on the project’s Hackster tutorial page (magpi.cc/trilasers), he seems to love it.

Pan and tilt
The laser’s main movement trajectory is handled by mounting it on a Pan–Tilt HAT, which has vertical and horizontal servo motors. “A pair of coordinates (x, y) is generated randomly,” explains Enzo. “The laser point moves from the current point to a new coordinate, following the segment that connects the two points, at a speed defined by a status variable. Once the new coordinates are reached, we loop back to point one.”

To add extra interest for Xander, its movement is randomised further by switching between three laser diodes to perform micro random movements very quickly. “Switching the active laser among the three allows extremely rapid movements of the laser dot, to create an extra variability of the light trajectories which seems more enjoyable for the cat,” says Enzo.

While the laser point is visible in daylight, it shows up better when there’s less light: “Xander prefers it when the room is completely dark.”
Xander prefers it when the room is completely dark, but cats are extremely skilled,” says Enzo. “So, he was able to reach the device few times. And the best way to save the device from cat attacks is to make it as still as possible, so the cat loses interest.”

Therefore a tilt sensor was added to the device, to cause it to shut down if triggered by an inquisitive Xander, thus reducing the risk of damage.

This isn’t the only feline-focused project from Enzo, who has also built an IoT food scale to monitor when and how much Xander eats, sending the data to a Google Cloud online dashboard. He’s now working on a wheeled robot to track the cat with a camera and perform a few interactions – we wonder what Xander will make of that.

Quick FACTS

- The project took a couple of months to complete
- A Pan-Tilt HAT handles the main laser trajectory
- Three lasers are used to produce micro movements
- The software is on GitHub: magpi.cc/ghtrilasers
- 3D print designs are downloadable from magpi.cc/trilasers

Three laser diodes are set into a 3D-printed holder and mounted on a Pan-Tilt HAT to move the laser dot between random points.
Should the world ever be plunged into an apocalypse, then Jay Doscher should do just fine. He’s created a rugged-looking laptop using a Raspberry Pi 4 computer and placed it within a small, air- and watertight Pelican case. Aimed at getting technology up and running in the event of a disaster, it should see him through the most testing of times.

“Most people prioritise food and shelter in the event of a disaster, but what do you do when those are resolved – how do you get technology working again?” he asks. “The apocalypse is more of a thought exercise for me, but I’ve certainly created a very useful computer that is much easier to work on or modify than a regular laptop.”

Past lessons
Jay has been here before. In 2015, he popped a Raspberry Pi 2 into a weather-resistant enclosure and created the Raspberry Pi Field Unit that could run off a 12V or higher power source, in this case a solar panel. Perfect for outdoor use, it also utilised an Adafruit real-time clock to retain accuracy when off the network. But it was far from perfect.

“The Raspberry Pi Recovery Kit is an evolution of that previous build,” he says. “Although each has different goals, I wanted a Raspberry Pi setup that could be rugged and work in a more hostile environment. I also wanted a system that could serve more than one purpose, since the Raspberry Pi platform is so flexible.”

One of the first issues he looked to address was the original lack of a keyboard. This time around, he bought a Plaid keyboard kit and, to his delight, noted that it was a perfect fit for his Pelican 1300 case. Jay also chose to use the official 7-inch Raspberry Pi touchscreen. This did away with the need for a mouse, while freeing up a much-needed USB port on Raspberry Pi 4.

With attention paid to tight wiring and realising that he could get away with powering the unit using 5V, thereby reducing the need for 12V circuitry, it wasn’t long before the project began coming together. “A Raspberry Pi computer is perfect for this project because it’s small, flexible on GPIO, and...
has great support for third-party add-ons like the GPIO breakout HAT I used,” Jay says.

Future-proofing

For a neat interior and to ensure all of the components could be easily held in place, internal parts were printed on a Prusa i3 MK3S 3D printer. For the host of connectors, a panel was produced with locking switches that could turn individual components on and off. These allowed control over Raspberry Pi 4, display, and Netgear five-port Ethernet network, saving power in a potential emergency. A switch also allows toggling between an internal and external battery.

“The internal battery has been the most difficult part, and I am still working on that,” Jay says. “There are no real considerations on the Raspberry Pi board itself for battery management, and Raspberry Pi 4 was pretty power-hungry when I built this kit.”

Thankfully, coding proved easier. “It’s a regular Raspberry Pi laptop in many ways, but I am working on scripts to mirror my GitHub projects, Wikipedia, and Raspbian APT libraries while following their guidelines on proper mirroring,” he reveals.

The result is a cyberdeck that can work as a portable standalone network core if needed. “It’s a great system to keep air-gapped from the rest of the network when not in use,” Jay concludes. The battle for survival starts here.

Quick **FACTS**

- No holes were drilled into the Pelican case
- The entire device is kept watertight
- The main frame took 24 hours to 3D-print
- It can be powered internally and externally
- It’s stored in an electromagnetic pulse shielding box

It’s a regular Raspberry Pi laptop in many ways

For a neat interior and to ensure all of the components could be easily held in place, internal parts were printed on a Prusa i3 MK3S 3D printer. For the host of connectors, a panel was produced with locking switches that could turn individual components on and off. These allowed control over Raspberry Pi 4, display, and Netgear five-port Ethernet network, saving power in a potential emergency. A switch also allows toggling between an internal and external battery.

“The internal battery has been the most difficult part, and I am still working on that,” Jay says. “There are no real considerations on the Raspberry Pi board itself for battery management, and Raspberry Pi 4 was pretty power-hungry when I built this kit.”

Thankfully, coding proved easier. “It’s a regular Raspberry Pi laptop in many ways, but I am working on scripts to mirror my GitHub projects, Wikipedia, and Raspbian APT libraries while following their guidelines on proper mirroring,” he reveals.

The result is a cyberdeck that can work as a portable standalone network core if needed. “It’s a great system to keep air-gapped from the rest of the network when not in use,” Jay concludes. The battle for survival starts here.
SUBSCRIBE TODAY
FROM ONLY £5
SAVE UP TO 35%

Subscriber Benefits

- FREE Delivery
 Get it fast and for FREE
- Exclusive Offers
 Great gifts, offers, and discounts
- Great Savings
 Save up to 35% compared to stores

Rolling Monthly Subscription

- Low monthly cost (from £5)
- Cancel at any time
- Free delivery to your door
- Available worldwide

Subscribe for 12 Months

£55 (UK) £90 (USA & Rest of World)
£80 (EU)

Free Raspberry Pi Zero W Kit with 12 Month upfront subscription only (no Raspberry Pi Zero Kit with Rolling Monthly Subscription)

Subscribe by phone: **01293 312193**
Subscribe online: **magpi.cc/subscribe**

Email: **magpi@subscriptionhelpline.co.uk**
JOIN FOR 12 MONTHS AND GET A
FREE Raspberry Pi Zero W Starter Kit
WITH YOUR SUBSCRIPTION

Subscribe in print for 12 months today and you’ll receive:

- Raspberry Pi Zero W
- Raspberry Pi Zero W case with three covers
- USB and HDMI converter cables
- Camera Module connector

Offer subject to change or withdrawal at any time

WORTH £20

Buy now: magpi.cc/subscribe

SUBSCRIBE on app stores
From £2.29

magpi.cc | 23
Magic mirrors have to be one of the most popular projects out there. Initially created by combining old laptops and semi-reflective observation glass, they appear as normal mirrors but with text and images that appear to float in mid-air. The information displayed is typically what you need as you’re preparing to leave the house: weather, news headlines, and transit information. Although they come across as advanced builds, the community behind the projects have made significant advances in making magic mirrors accessible to all. Let’s take a look at one of these makers and then have a go at building our own mirror.

PJ Evans goes through the looking glass.
Creating a good magic mirror requires experience in many disciplines including carpentry, electronics, programming, and graphic design. Fortunately, the team at MagicMirror², headed by Michael Teeuw (see The MagPi issue 54, magpi.cc/54), have not only compiled tutorials and fostered a great community, they’ve also built their own open-source application. This modular system takes away all the programming and design pain. Best of all, you can expand the capabilities of your mirror through the hundreds of community plug-ins available and, if you wish, you can write your own. It’s no wonder it won the number one slot in our best projects feature for issue 50.

magicmirror.builders

The frame needs to be deep and sturdy to accommodate the display and computer.

An LCD screen; for best effect, it needs to removed from its casing to sit flush.

Information is displayed in corners, typically in high-contrast black and white.

This is semi-transparent ‘observation glass’: darker than a usual mirror, but it allows the display to show through.

MAGICMIRROR²

TUTORIAL

Build The Ultimate Magic Mirror

Build The Ultimate Magic Mirror | magpi.cc | 25
Here have been some impressive magic mirror projects as makers around the globe challenge each other to improve on previous designs. Although the results are undoubtedly impressive, it can make the hobby look a little daunting to the beginner, especially if you don’t have access to the necessary equipment to build a custom frame. In this tutorial, we’ll assemble a simple magic mirror using off-the-shelf parts. This can be built in an afternoon and is a great way to find out whether you want to take it to the next step and get working on something a bit bigger.

01 Prepare the frame
To create our magic mirror, we will create a ‘sandwich’ of the frame, a piece of observation mirror acrylic, and the screen. It’s vital that all these are kept as clean as possible during assembly as any dust will get trapped and leave an irritating mark on your lovely mirror. Unpack the frame, remove the mount, and then remove the plastic clear sheet. You’ll need to carefully peel back the two protective layers and then replace the clear sheet in the frame. This is statically charged and will start to attract dust, so lots of cleaning is required. Return the mount to the frame.

02 Mount the mirror
The big ‘trick’ of a magic mirror is the use of two-way material, also known as ‘observation glass’. This material is the same that is used in police interview rooms and as privacy screening. It’s only semi-reflective, so the output from your screen can be seen ‘through’ the glass but it’s still effective as a mirror (if a little darker than a regular mirror). This material is cheapest when bought by the roll, so it’s ideal for custom-build or larger mirror projects. Ours is a £5 A5 acrylic sheet. Remove the protective sheeting and place in the frame, making sure it covers the open area. Secure with sticky tape.

03 Add the screen
We’re using the official 7-inch touchscreen for this project to make power requirements easier; we only need one cable to drive both Raspberry Pi and the display. It also happens to be a perfect size for this project. The touchscreen needs to be carefully placed so it’s in parallel with the frame and central. Secure with sticky tape.

You’ll Need
- [Ikea Ribba 18×24 picture frame](magpi.cc/ribba)
- [Official Raspberry Pi 7” Touchscreen](magpi.cc/touchscreen)
- [A5 observation mirror](magpi.cc/a5mirror)
- Gaffer or duct tape
- Velcro or foam sticky pads

Tip! Not for Zero
A Raspberry Pi Zero would seem ideal for this project, but MagicMirror is incompatible with that model and the original Raspberry Pi 1.
04 Secure in place
The combined weight of a Raspberry Pi computer and the touchscreen doesn’t come to much, so rather than getting into complicated mounting solutions, we will apply generous amounts of gaffer (or duct) tape to hold everything in place. This is of course a very lo-fi solution – if you want to go for something more refined, you can consider making use of the mounting points on the screen that can be used with horizontal or vertical bars to attach to the inner edge of the frame. Check for any trapped dust or marks in our ‘sandwich’ before proceeding.

05 Just add Raspberry Pi
Normally, you would mount a Raspberry Pi computer on top of the screen’s PCB on the provided standoffs. If you want to mount your completed mirror on the wall, this poses a problem, as the computer now sits quite a way proud of the frame. Your options are: 1) don’t care (not advisable), 2) buy a second frame and fix it to the original to double its depth, or 3) mount the Raspberry Pi computer on the side. We’ve gone with option three and it just fits, even with the supplied display cable. Make sure you line the back of the screen with insulation tape to avoid any electrical shorts and secure in place with a Velcro pad to allow for future access to the microSD card.

06 Check and test
With a microSD card with Raspbian installed, mount the Raspberry Pi 4 into place. Check the display ribbon cable hasn’t been stretched too much and the four jumper cables that connect the display to the GPIO are in the correct position. You should now be able to boot and see the Raspbian boot sequence through the display. It will probably look disappointingly dull. Don’t worry, we’ll address that in the next tutorial. If everything is free of dust, secured, and the display is working, shut everything down (you may need to connect a keyboard and mouse to do this).

Tip!
Larger screen? Better mount
We’ve chosen gaffer tape, as the official screen is very light. This would be a terrible idea for a ‘full-size’ monitor.

PROFESSIONAL BUILDS
We’ve created a simple project for you here that requires no cutting or mains electricity. However, it would be remiss of us not to admire the work of those who have dedicated hours and hours to making the ultimate magic mirror. One of those is MagicMirror creator Michael Teeuw, who has created several mirrors completely from scratch, building his own frames and carefully mounting large monitors – all powered by Raspberry Pi computers, of course! The great thing about magic mirrors is you can start small and work up to masterpieces like this, learning as you go.
michaelteeuw.nl
So far, we’ve got a frame built and ready to go. Next, we’ll look at how to set up your Raspberry Pi computer to run MagicMirror 2, a dedicated application for creating magic mirror displays that takes all the hard work out of the software side of this project. MagicMirror 2 has been authored by Michael Teeuw, who created the amazing mirror in the beginning of this feature. Not only does the software provide a plug-in system to control what’s displayed, it also configures your Raspberry Pi computer for optimal performance as a mirror. That said, there are a few things to do, so let’s get started.

01 First boot-up
In the final step of the previous tutorial, we checked that Raspberry Pi would boot correctly in its new home. If you haven’t done this already, prepare a microSD card with an image of Raspbian or Raspbian Full (not Raspbian Lite, as we need the desktop). If you have access to a second identical Raspberry Pi computer, it might be easier to use that, as the display will be easier to see, then swap the microSD card when you’re done. Go through the first-run wizard that helps you configure WiFi and updates all your software to the latest version.

02 Make access easier
Every time you want to make a configuration change, it’s going to be a nuisance to take the mirror down off the wall, locate a keyboard, mouse, and possibly monitor to make a simple edit. Instead we can use VNC and SSH to make life easier. VNC allows us to access the desktop remotely via VNC Viewer, which is available for many different platforms. SSH is similar, but for the command line. To enable both of these, open the desktop menu (the raspberry icon) and click on Preferences, then Raspberry Pi Configuration. When its window appears, click the Interfaces tab and ensure VNC and SSH are enabled, but don’t close the window just yet.

03 Set your host name
To avoid your magic mirror bumping into any other Raspberry Pi computers you may have on your network, we strongly recommend setting the computer’s host name (the name it is known as on the network) to something unique. Again, you can set this in the Raspberry Pi Configuration tool. On the System tab, choose an appropriate name such as ‘magicmirror’ (lower case, no spaces or special characters) and click OK. A reboot will be required for this to take effect. Once done, you can point your VNC Viewer or SSH client to magicmirror.local to gain remote access.
NEW GRAPHICAL EDITOR!

CDP STUDIO
Professional control system development tool

CDP Studio is a development platform for industrial control systems, now coming with a free version for non-commercial use. The system can run on a Raspberry Pi, supports C++, open source libraries and has a large feature toolbox including GPIO, I2C and MQTT. Its built in GUI design tool and features lets you code less and do more.
Install MagicMirror²

Now the fun part. MagicMirror² is an Electron app: a web app wrapped up in its own browser. Installing it manually is complex, but Michael and the team have provided an elegant script that automates the entire process. Get to a command-line prompt by using Terminal or an SSH client and carefully enter the following command:

```
```

(For more detailed instructions, see magpi.cc/magicmirror.)

The script will now install Node (the programming environment that runs MagicMirror²), Electron, and the app itself.

Configuring MagicMirror²

During installation you’ll see a lot of text fly by the screen, along with a couple of warnings that can be safely ignored. You will be asked at one point whether you want to install and enable pm2. Process Manager 2 (pm2) is an application that simplifies the running of Node apps (or anything else), starting things at boot or automatically restarting apps when they crash. If you reply ‘yes’, pm2 will start MagicMirror² immediately on boot. You will also be asked if you want to start the app right away. If you’re eager to see it in action, say yes.

```
```

(For more detailed instructions, see magpi.cc/magicmirror.)

The script will now install Node (the programming environment that runs MagicMirror²), Electron, and the app itself.

Initial configuration

MagicMirror² is now installed and you should be able to see the display automatically restarting apps when they crash. If you reply ‘yes’, pm2 will start MagicMirror² immediately on boot. You will also be asked if you want to start the app right away. If you’re eager to see it in action, say yes.

```
```

(For more detailed instructions, see magpi.cc/magicmirror.)

The script will now install Node (the programming environment that runs MagicMirror²), Electron, and the app itself.
Voice Control for your Magic Mirror

Mirror, mirror on the wall, who’s the fairest of them all? Whaddaya mean, ‘Alexa’?

01 Get the right kit
Reliable voice recognition requires a good-quality microphone. If you want to use services such as Alexa, you may want to add an amplified speaker too. The easiest options are widely available USB sound devices, many of which are compatible with Raspberry Pi.

![The Snowflake mic is a great choice](image)

02 Choose your solution
MagicMirror’s plug-in system and amazing community means you have a wide choice of voice assistants with different purposes and capabilities. See magpi.cc/mirrorvoice for the current list of modules.

03 Install your module
A good starting module is one called MMM-awesome-alex. Follow the instructions at awesome-alex.js.org to install the module, then add your microphone and speaker to your mirror build, being careful not to ‘muffle’ the mic. Now your mirror is Alexa-enabled!

Old monitors and TVs also make great mirror options, and you can still easily add voice control to them!

NEXT MONTH!
Module Magic
Next month we'll take a closer look at how modules are used to add more magic to your mirror. Keep an eye out for The MagPi issue 91.

Build The Ultimate Magic Mirror | magpi.cc | 31
Build Your Own FIRST-PERSON SHOOTER in Unity

Learn Unity • Create enemies • Design levels • Make Zombie Panic

Creating a deployable gun turret in Unity

The theory behind first-person hitboxes
Build Your Own FIRST-PERSON SHOOTER in Unity

Making a fast-paced 3D action game needn’t be as daunting as it sounds. *Build Your Own First-Person Shooter in Unity* will take you step-by-step through the process of making *Zombie Panic*: a frenetic battle for survival inside a castle heaving with the undead.

IN THE PROCESS, YOU’LL DISCOVER HOW TO:

- Set up and use the free software you’ll need
- Create and texture 3D character models
- Make enemies that follow and attack the player
- Design a level with locked doors and keys
- Extend your game further, with tips from experts

Available now: wfmag.cc/fps
Run your Raspberry Pi 4 faster with our guide to overclocking the CPU and GPU. By Lucy Hattersley

At the heart of Raspberry Pi 4 sits an ARM Cortex-A72 CPU (central processing unit) running at a maximum clock speed of 1,500MHz (or 1.5GHz).

The clock is the electronic pulse used to synchronise all the components in a processor (foldoc.org/clock). A maximum clock speed of 1.5GHz means the processor updates one-and-a-half billion times per second.

This is the maximum speed: Raspberry Pi typically idles at 600MHz and switches to the maximum speed when needed. Overclocking is the process of setting a higher maximum speed for computer components. We can adjust the settings in config.txt to overclock both the CPU and GPU (graphics processing unit).

We’ve experimented with speeds up to 2.147GHz for the CPU and 750MHz for the GPU (up from its 500MHz default). These are the kinds of speeds found on high-end desktop computers.

Your mileage will vary, and if Raspberry Pi gets too hot it will slow right down. Experimenting with overclocking will crash Raspbian, and there is a high chance your Raspberry Pi will refuse to start at some point. If programs start crashing, or Raspbian refuses to start, you will need to dial back on the speed. But overclocking is fun and potentially a way to get more from Raspberry Pi.

01 Raspberry Pi 4 Stand

We start by placing Raspberry Pi 4 in a vertical position. This improves airflow around the components and is surprisingly effective at keeping the temperature down (see Thermal Testing in magpi.cc/88).

Use the Raspberry Pi 4 Stand on the front of the print edition of The MagPi #90 to run Raspberry Pi in a vertical position. If you don’t
have a Raspberry Pi 4 Stand, you can 3D-print or laser-cut your own with the files on our GitHub page (magpi.cc/github).
Alternatively, place your Raspberry Pi inside a case designed to manage the CPU temperature (see our Thermal Cases group test on page 66).

Update Raspberry Pi 4
Make sure you are running the latest version of Raspbian OS. Tweaks to performance are being made all the time and you will hit faster speeds with the latest software.
Open a Terminal and enter the following:

```
sudo apt update
sudo apt dist-upgrade
```

Now reboot the system:

```
sudo reboot
```

This restarts Raspbian.

Watch your speed
Before we start overclocking, take a look at the default CPU speed. Open a Terminal and enter:

```
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq
```

Terminal will most likely return 600000. Divide this result by 1000 and you’ll get the speed in MHz. This is the base speed: 600MHz (or 0.6GHz).

Top Tip

Monitoring voltage

It is essential to keep the supply voltage above 4.8 V for reliable performance. Note that the voltage from some USB chargers/power supplies can fall as low as 4.2 V. This is because they are usually designed to charge a 3.7 V LiPo battery, not to supply 5 V to a computer.

To monitor Raspberry Pi’s PSU voltage, you will need to use a multimeter to measure between the VCC (5 V) and GND pins on the GPIO.

More information is available on the Raspberry Pi website (magpi.cc/powersupply).

```
watch -n 1 vcgencmd measure_clock arm
```

As you use your Raspberry Pi, the requested speed will boost to its upper level, which is 1500000. You can keep entering `vcgencmd` in Terminal to see where it’s currently at, but it’s better to use the `watch` command to monitor the speed.

```
watch -n 1 vcgencmd measure_clock arm
```

This keeps vcgencmd running as a process and updates the result once per second (the `-n 1` option is the interval in seconds). Start using your Raspberry Pi and you’ll soon see the result go slightly above 1500000 (or 1.5GHz).
04 Overclock your config

We’re going to use the `config.txt` file to set a new upper limit for the clock frequency. Open another Terminal window and enter:

```
sudo nano /boot/config.txt
```

Scroll down to the section marked:

```plaintext
#uncomment to overclock the arm. 700 MHz is the default.
#arm_freq=800
```

And change the settings to:

```plaintext
#uncomment to overclock the arm. 700 MHz is the default.
over_voltage=2
arm_freq=1750
```

Save the file with CTRL+O (press RETURN) and use CTRL+X to exit Nano. Restart your Raspberry Pi.

```
sudo reboot
```

When the system starts up again, watch `vcgencmd` again to see your new, faster clock speed in action:

```
watch -n 1 vcgencmd measure_clock arm
```

Browse a few webpages and you’ll see speeds around 1750000000 (or 1.75GHz).

05 Understanding over_voltage

The `over_voltage` command adjusts the core CPU/GPU voltage, and accepts figures between -16 and 8. The default value is 0.

More CPU speed demands higher voltage and if Raspberry Pi doesn’t get enough volts, you will see a small lightning bolt appearing in the top right of the window (at this point, the CPU will be reduced to the 700MHz default speed).

06 Crank it up

Let’s try taking things a little faster. We’re going to take the `over_voltage` setting to 6 and set the ARM CPU to 2.0GHz. Edit the `config.txt` file with the following settings:

```
over_voltage=6
arm_freq=2000
```

This is as high as we’re going to take `over_voltage`.

Reboot the Raspberry Pi and you’ll be running at 2.0GHz. Run `watch -n 1 vcgencmd measure_clock arm` again to see the new upper limit.
07 Take it to the max

Now we’re going to boost the \texttt{gpu_freq} and take the CPU to its highest setting. This enables Raspberry Pi to run at its current maximum speed. Use Nano to edit the \texttt{config.txt} file again, this time setting \texttt{arm_freq} to 2147 and \texttt{gpu_freq} to 750:

\begin{verbatim}
over_voltage=6
arm_freq=2147
gpu_freq=750
\end{verbatim}

The \texttt{gpu_freq} oversees a range of settings: \texttt{core_freq}, \texttt{h264_freq}, \texttt{isp_freq}, and \texttt{v3d_freq}. The \texttt{core_freq} setting adjusts the frequency of the GPU processor. It influences CPU performance because it drives the L2 cache and memory bus.

The default value is 500, and 750 is the highest we can set it and still had a Raspberry Pi 4 run. We have also had Raspberry Pi 4 boards fail to boot at this speed, and others quickly slowed down from overheating or undervoltage. You are unlikely to be able to maintain this speed for the long term and your mileage will vary.

Save the file and exit Nano (CTRL+O and CTRL+X). Reboot and your Raspberry Pi is hopefully running as fast as it can.

08 Recover from black screen

We have started a Raspberry Pi at speeds of up to 2.147GHz but some of our devices failed to boot, and others showed Undervoltage Warnings (thus reducing the speed). Eventually, we settled for \texttt{arm_freq=2000} in \texttt{config.txt}. Our engineering team told us that the benefits from \texttt{gpu_freq} are marginal at best, and it should be removed if Raspberry Pi 4 fails to boot.

Your Raspberry Pi will most likely fail to boot at some point when overclocking. See ‘Overclocking problems’ for more information on recovery. Otherwise, have fun and we hope you’ve enjoyed this excursion into overclocking.

Firmware warning icons

Under certain circumstances, the Raspberry Pi firmware will display a warning icon on the display, to indicate an issue. If you see these icons routinely appearing, you should reduce the overclocking speed. There are currently three icons that can be displayed:

- **Undervoltage warning**

 If the power supply to the Raspberry Pi drops below 4.63V (+/−5%), this lightning bolt icon is displayed.

- **Over temperature warning (80-85°C)**

 If the temperature of the SoC is between 80°C and 85°C, this icon is displayed. The ARM core(s) will be throttled back in an attempt to reduce the core temperature.

- **Over temperature warning (over 85°C)**

 If the temperature of the SoC is over 85°C, this icon is displayed. The ARM core(s) and the GPU will be throttled back in an attempt to reduce the core temperature.

Overclock Raspberry Pi 4

Top Tip

Documentation

See the ‘overclocking options in config.txt’ page on Raspberry Pi’s website for detailed information on all overclocking options. magpi.cc/overclockingoptions

config.txt

\begin{verbatim}
001. #uncomment to overclock the arm. 700 MHz is the default.
002. over_voltage=6
003. arm_freq=2000
\end{verbatim}

DOWNLOAD THE FULL CODE:

magpi.cc/github
3D-print a keyring with BlocksCAD

Use BlocksCAD to design, and print, a text-based keyring.

Last month we introduced our readers to BlocksCAD, a web-based program that can be used with Raspberry Pi to create 3D printable objects. In this project, you will use BlocksCAD to design a 'CODER' keyring that can be 3D-printed.

BlocksCAD is a 3D model editor that you can use in a web browser on a computer or tablet. You drag and drop code blocks to design 3D models that can be exported for 3D printing.

If you have access to a 3D printer, then you can print your keyring. The keyring doesn’t use a lot of filament and is small and quick to 3D-print. The keyring will measure around 14 mm by 50 mm. You can put a split ring through the gap between the ‘C’ and the ‘O’ to make a keyring.

Rendering is the process of creating an image from a 3D model so that we can see what it looks like.

01 Create 3D text

Open the BlocksCAD editor in the Chromium web browser on your Raspberry Pi: blockscad3d.com/editor. You can drag and drop blocks to write code to create 3D objects (see The MagPi 89 for a BlocksCAD primer: magpi.cc/89).

First, use the 3D text tool to create some 3D letters. Click on Text and then drag a 3D text block onto the canvas. Change the 3D text field to say 'CODER'.

Click the Render button to see the 3D text appear in the preview window. Rendering is the process of creating an image from a 3D model so that we can see what it looks like.

02 Make the text bigger

To make the letters bigger, change the size field to 20 – that means font size 20. Click Render again to see the result. If you 3D-printed the model you have created now, then you would get

You’ll Need

- A 3D printer and filament. Solid colours work best
- A split ring for making the keyring. A 19 mm diameter split ring works well
- BlocksCAD blockscad3d.com
five separate letters, because they are not joined together. That wouldn’t make a very good keyring!

03 Join the letters together
Next, you will join the letters together so that the keyring works as a single object.

Change your existing code so that it only creates the letter ‘C’. Add a union block, from Set Ops, to join shapes together. Start with the first two letters: ‘C’ and ‘O’ (by creating a second 3D text block and adding both to the union block).

Click Render and you’ll see that there is a problem: the ‘C’ and the ‘O’ are in the same place. You need to move the ‘O’ along the X axis so that it comes after the ‘C’.

Add a translate block, from Transforms, and set the value of X to 10 to move the ‘O’ 10 mm along the X axis.

Now, the letters should be touching, but not on top of each other.

04 Add the rest of the letters
Click the [+] button on the union block to add a space for another block. Right-click on the translate block and select Duplicate to create a copy (of it and the 3D text block inside it).

Drag the copy into the union block and change the ‘O’ to a ‘D’. Change the X value of the second translate block to 20 so that the ‘D’ is in the right place. Now, follow the same process to add an ‘E’ and an ‘R’ to finish the word ‘CODER’.

Make sure that all of the letters are touching, and that there are no gaps between any of the letters.

Top Tip
Remove filament
You might need to remove some small strands of filament to tidy up the print.
Next, we'll alternate the thickness of the letters to help separate them, and to make our keyring even better. The letters are currently all 2 mm thick; we want the make the ‘C’, ‘D’, and ‘R’ thicker than the ‘O’ and ‘E’, by making them 3mm.

To do this, change the thickness value for the ‘C’, ‘D’, and ‘R’ `3D text` blocks to 3, then click `Render`. Note that you can drag your model around to view it from different angles. You can also click an icon (to the right of the colour) to hide the grid.

To save your project, click on Project in the menu bar and select Save Blocks to your Computer.

Save your project
To save your project, click on Project in the menu bar and select Save Blocks to your Computer. Give your project a recognisable name and remember where you save it. You can then use Load Blocks from your Computer to open the project that you have saved and continue working on it.
If you have a BlocksCAD account and you’re logged in, then you can click on Project in the menu bar and select Save. This saves your project online so that you can access it from any computer.

07 3D-print your keyring

BlocksCAD can export an STL file for 3D printing. Render your model and then click Generate STL. Remember where you save the STL file. There are lots of tools that can read STL files and send 3D models to a printer. The one you choose will depend on the 3D printer that you are using. Carefully remove the 3D print from the print bed. Attach the split ring to your 3D printed keyring.

You can change ‘CODER’ to any message you like, and even create connected layers of text, as in this ‘YOU ROCK’ keyring.

Top Tip

Change colour

You can click on the coloured square to change the colour of your model in the preview window. If you 3D-print the model, the colour of the keyring will depend on the colour of the plastic filament that you use, but it’s useful to be able to try out different colours in the preview.
Protect your stuff from nosey parents, annoying siblings, or your nemesis with this easy-to-build motion-detection alarm

If you’re just getting into making with Raspberry Pi, this tutorial is a great example of using our favourite little computer for physical computing, reacting to inputs, and doing something useful with the results. It also demonstrates some of the challenges you may face when handling different types of voltage and current. Here you’ll learn how to make a simple motion detector that triggers a siren and sends an alert to your smartphone when it’s triggered. You can then make the project your own through experimenting and adding more features.

Why an Automation HAT?
Many Raspberry Pi physical computing projects directly use the GPIO to connect things like sensors, buzzers, and LEDs. In this case, we’re going use the incredibly versatile Pimoroni Automation HAT. This ‘input expander’ allows us to control devices that would normally either be incompatible or even damage your Raspberry Pi. As a small buzzer may not be particularly deterring to a would-be room invader, we’ve chosen a 120 dB siren that requires more current that our Raspberry Pi can safely handle. So, we will give the siren its own power supply and safely control it using one of the Automation HAT’s relays.

Set up the software
We’re going to use Raspbian Buster Lite as the operating system as there’s no need for a user interface, just a basic command-line operating system. That said, there’s no harm in installing the full version if you’re more comfortable with that. Download the image from magpi.cc/raspbian and flash to a microSD card. Now, as ever, it’s time to log in and update everything with `sudo apt update && sudo apt upgrade`. Once finished, run `sudo raspi-config` and set up networking (if using WiFi). Now, install the Automation HAT software by running the following command:
This will guide through setting up for driver software and examples. You may need to reboot your Raspberry Pi afterwards.

04 Get sensitive

The PIR sensor has three connectors: one for 5V power in (which can be provided by the HAT), ground, and in the centre is the data line. Operation is very simple. If the sensor is triggered by movement, the data line goes ‘high’ (outputs current). After a period of no movement, it goes low (no current). Its sensitivity can be controlled by adjusting one of the potentiometers (the left one when it’s turned upside down – see Figure 1). The other potentiometer sets the minimum time for which the sensor reports movement. We could connect the PIR directly to the GPIO, but as the HAT is now in the way, we’ll use its inputs instead.
07 This might get loud

The siren is capable of an ear-splitting 120 dB. Always wear ear defenders in case you accidentally set the siren off. This particular model is tolerant of voltages less than 12 V and the volume reduces accordingly. We recommend starting no higher than 5 V, which is still incredibly loud. The siren requires its own power supply, so you’ll need to source one (we recommend something with variable voltages so you can experiment with noise levels). Before continuing, make sure you’re happy with the siren’s noise levels. If you don’t want a loud siren, there are many buzzers and quieter alarms available that will work to demonstrate the project and will be much safer for younger makers to handle.

08 Relay race

Relays are magnetic switches, allowing one device to control another without their circuits ‘touching’. The Automation HAT comes with three relays and we’ll use one to switch the siren on and off. Making sure it’s unplugged, snip the siren’s positive line (red wire) and strip a bit of wire on both ends. Now, connect the part going to the power supply to one of the relays on the terminal marked ‘COM’ (common). Connect the other part of the red wire to the same relay on ‘NO’ (normally open). Double-check everything and make sure the wires are secure.

09 Software

We can now read an input and create an output using the relay. Using your favourite editor, enter the `roomguard.py` code here. This is a simple loop that will check the sensor twice a second to see if movement has been registered. If so, the relay is switched into place, allowing current to flow to the siren and it sounds. Once the sensor no longer registers movement, the relay is deactivated and it all goes quiet. If you don’t fancy typing it in, you can download all this code and a few extras from magpi.cc/roomguard.

To run the code, enter the following on the command line:

```
python3 ~/Pimoroni/automationhat/examples/input.py
```

You will now be shown the reading from all the input sensors. Watch the one to which you connected the data line in the previous step. It should report a 1 when it is activated (motion has been detected) and 0 when it ‘times out’. You can carefully adjust the two potentiometers on the sensor to fine-tune the sensitivity and timings to your preferences. Press CTRL+C to stop the Python script when you’re done.

Top Tip

Connect the sensor

Although this type of PIR sensor is widely available, they do vary in wiring. In particular, the orientation of Vcc (power in) and ground can be different. The sensor we’ve recommended here has both clearly marked on the PCB. Connect the ground pin to any of the GND connectors on the Automation HAT, then connect any 5 V power output to the 5 V in pin on the sensor. So that we know what state the sensor is in, connect the data line to any one of the buffered inputs on the HAT. Carefully check each of the screw terminals for a solid connection.

Time for a test

When you installed the software for the Automation HAT, examples and documentation were included. We can use these to quickly test and calibrate the sensor. From the command line, run the following:

```
python3 ~/Pimoroni/automationhat/examples/input.py
```

Always wear ear defenders in case you accidentally set the siren off

Relay race

Relays are magnetic switches, allowing one device to control another without their circuits ‘touching’. The Automation HAT comes with three relays and we’ll use one to switch the siren on and off. Making sure it’s unplugged, snip the siren’s positive line (red wire) and strip a bit of wire on both ends. Now, connect the part going to the power supply to one of the relays on the terminal marked ‘COM’ (common). Connect the other part of the red wire to the same relay on ‘NO’ (normally open). Double-check everything and make sure the wires are secure.

Software

We can now read an input and create an output using the relay. Using your favourite editor, enter the `roomguard.py` code here. This is a simple loop that will check the sensor twice a second to see if movement has been registered. If so, the relay is switched into place, allowing current to flow to the siren and it sounds. Once the sensor no longer registers movement, the relay is deactivated and it all goes quiet. If you don’t fancy typing it in, you can download all this code and a few extras from magpi.cc/roomguard.

To run the code, enter the following on the command line:

```
python3 ~/Pimoroni/automationhat/examples/input.py
```

You will now be shown the reading from all the input sensors. Watch the one to which you connected the data line in the previous step. It should report a 1 when it is activated (motion has been detected) and 0 when it ‘times out’. You can carefully adjust the two potentiometers on the sensor to fine-tune the sensitivity and timings to your preferences. Press CTRL+C to stop the Python script when you’re done.

Calibrate carefully

Be patient when calibrating the sensor. Start with both potentiometers turned fully anti-clockwise, and work from there.

There’s plenty of scope for adding more to the project, such as an inexpensive keypad or a camera

TUTORIAL Build an internet-connected room guard
Add notifications
We now have a working motion-detection alarm, but this is meant to be internet-connected, so let’s make it smarter. It would be useful to have a notification sent to a smartphone when the alarm is activated. There are many different types of notification service, and adding support for most is possible using just one Python library, Apprise. Have a look at the code for roomguard_notify.py on GitHub for an example of how to add notifications. Also, check out Apprise’s documentation at magpi.cc/apprise.

Add a camera
Now the basics are working, you can augment the alarm with additional sensors and/or notifications. The Automation HAT has plenty of remaining inputs and outputs for you to play with. A simple step would be to add a Raspberry Pi Camera Module. See if you can change the code to take a photo of the intruder and then forward that image to your notification. Look at the GitHub repository for an example.

Make it your own
What else could you add? One aspect of an alarm not implemented is any kind of deactivation. Could you add a web server so you can control the alarm from your phone? How about using a keypad to set an activation code? There’s potential to add batteries and additional PIR sensors to create a standalone unit. Use facial recognition software to identify who was in your room. There’s lots of avenues to explore. Over to you.

```python
import time
import automationhat

alarm_sounding = False

# A short delay so you have time to get clear!
print("Arming in 10 seconds")
time.sleep(10)

print("Armed!")

while True:
    # Check the current state of the PIR sensor
    motion_detected = automationhat.input.three.read()

    # If new motion detected sound the alarm
    if motion_detected and alarm_sounding != True:
        print("Motion detected, loud noise time")
        automationhat.relay.one.on()
        alarm_sounding = True

    # If motion no longer detected stop the alarm
    if motion_detected != True and alarm_sounding:
        print("It's all gone quiet, switching off")
        automationhat.relay.one.off()
        alarm_sounding = False

time.sleep(0.5)
```
American Raspberry Pi Shop

- Displays
- HATs
- Sensors
- Cases
- Arcade
- Swag
- Project Kits
- Cameras
- Power Options
- Add-on Boards
- Cables and Connectors
- GPIO and Prototyping

Partner and official reseller for top Pi brands:

- adafruit
- sparkfun ELECTRONICS
- PIMORONI
- HiFiBerry
- and many others!

Price, service, design, and logistics support for VOLUME PROJECTS

USA PiShop.us

Canada BuyaPi.ca

Raspberry Pi APPROVED RESELLER
As you might know, we are very keen on hexagons here at the Pi Bakery, and this month we were inspired by an Adafruit project (magpi.cc/adafruitmidi). While the aesthetic looked cool, there were things we didn’t like. The project required you to have access to a CNC milling machine and 3D printer, it was MIDI only, and used Bluetooth. So, we set out to design something you could make with normal workshop tools, much simpler electronics, on-board touch-sensitive controls as well as note triggers, and which would use the Raspberry Pi.

Workshop tools used
We used a disc sander, pillar drill, junior hacksaw, vice, and files. For cutting out the shapes of case, you can use a bench saw – we used the Proxxon KS230 circular saw – and fret-saw, or, if you have access to one, you can use a laser cutter. Either way, the files you need to use are on our GitHub page for this project. The technique for using a saw instead of a laser cutter is simple: just print out the PDF file for the part you need and glue it to the plywood. Then follow the cuts with the saw. Use a fret-saw for cutting out the central slots in the cover.

The case parts
Wear goggles and gloves

The case consists of three hexagonal parts – base, top, and cover – along with six side panels. **Figure 1** shows all the pieces. If you are not using a laser cutter, it is important that all the holes line up exactly. So first, drill all the holes in the top plate – note that there are two 2.5 mm holes and the rest are 3 mm. Then clamp the top to the base and drill through the six holes in each of the corners of the hexagon. Countersink these holes on the underside of the base and the top of the top plate. Finally, drill the two ribbon cable clamp holes in the base.
03 Making the cover
Take the cover plate and drill two holes on opposite sides of the hexagon from the paper template. Then fasten the top plate and cover together using a nut and bolt through each hole. Next, drill through all the 3mm holes in the top plate into the cover plate to make sure that they line up exactly. Then countersink the six holes that are in the centre of each hexagon side closest to the edge, and also the holes at the top and bottom of the slots. Finally, drill, and countersink, the two 2.5mm holes in the top plate.

04 Making the sides
To complete the box, cut out the six sides. You will notice that one side has a very small slot in it: this is for the ribbon cable to leave the box and is only 1mm deep – make it with a couple of strokes of a flat file. Each edge of each side piece needs to be bevelled at 60 degrees; we did this using a disc sander with the guide set to this angle using a 30/60 set square. The shape is shown in Figure 2; make sure the bevelled edges are done so that the side with the ribbon cable exit slot rests on the bottom of the case.

05 Fixing the sides
Each side is glued on initially using superglue. If you have used a laser cutter, it is important to sand the base edge to remove the crystallised resin from the wood, otherwise the glue will not stick. Carefully align the piece using three set squares, as shown in Figure 3, before applying glue to the base of the side and any adjoining side piece. Manoeuvre into place and press down (Figure 4). You might have to make the pieces slightly shorter if they are too big. When you have stuck all the pieces down, reinforce them with a fillet of glue around the inside edges. If you have a gap in any of the corner pieces, use wood filler and sand down for a smooth finish.
06 Making the brass inserts
The brass strip proved quite tough to work. If we had the tools, we would have annealed it to make it more workable: what is required is to heat it up until it’s cherry red and then leave it to cool. Nevertheless, we managed to cut it using a new hacksaw blade and plenty of lubrication – specialist cutting oil is best, but ordinary lubricating oil will do. We cut the strip into the shapes shown in Figure 5, first, a slice was cut off the strip and then the 30 degree slope from each corner. Always cut on the waste side of the line and finish off with a file or disc sander.

A slice was cut off the strip, then the 30 degree slope from each corner.

07 Painting the box
We used a combination of PlastiKote Flat Black B2 and ‘Game Color’ Orange Fire 72.008 to paint the box. Using a fine P600 wet and dry grit paper, we smoothed down the wood after the first of two coats. Then we applied two coats of Ronseal matt clear varnish. The tops of the six-note trigger insert screws were painted black and the four control screws were painted orange, with the six corner holes screws painted Antique Gold B34 to match the brass. Note that only a small part of the top plate is seen, therefore you need only paint the corners of the top plate.

08 Drilling the brass inserts
We marked the brass control strips through the holes in the top cover and drilled them out 3mm. Then we put the brass strips on, shown in Figure 6.

Top Tip

Painting screw tops

When painting the tops of the countersunk screws, we used a lump of Blu Tack to hold them upright. We only use these for the final assembly; before that, we used unpainted screws for the many trial assemblies.
The brass inserts need filing and sanding to remove sharp edges and corners. Run your finger over them to check all is smooth. The brass only needs to be polished up to the mounting hole. We used a P600 wet and dry grit paper – first dry and then wet – to remove any scratches, and finished off with Brasso polish. When installing all the brass for the final time, make sure you check continuity with a meter between the brass and the screw. If it is open circuit, then put a very small amount of conducting paint in the hole and try again. Similarly, conducting paint is used to fix the rectangular control fill pieces to the control strip to bring them closer to the surface of the cover plate.

The schematic.

The schematic of our circuit is shown in Figure 7. Basically, it is the MPR121 touch sensor breakout board and a bunch of LEDs. We used 3mm blue LEDs for the key triggers controlled by GPIO outputs, and 3mm red/green common cathode LEDs for the control strip indicators, all in a diffused package. You might have to enlarge the two holes for these in the top plate to allow you to push them through. These were driven from four of the unused touch sensor connectors. Special registers inside this complex chip were used to make these four touch inputs into LED driving outputs.
#!/usr/bin/env python3
Test the Hex-A-Pad touch sensors and LEDs
with simple sounds
By Mike Cook January 2020
import sys
import time
import board
import busio
import adafruit_mpr121
import digitalio as io
import pygame

def main():
 global last_touch
 init()
 setMPR121()
 last_touch = cap.touched()
 print ('Adafruit MPR121 Capacitive Sensor Test')
 print ('Press Ctrl-C to quit.')
 while True:
 if not capSenseNew.value:
 cur_touch = cap.touched()
 for i in range(0, 8):
 readPins(i, cur_touch)
 last_touch = cur_touch
 time.sleep(0.1)

 def readPins(i, c_touch):
 global last_touch
 pin_bit = 1 << i
 if c_touch & pin_bit and not last_touch & pin_bit:
 print(i, "touched - now playing", soundNames[i])
 if i < 6:
 i2c.writeto(0x5A, bytes([0x79, 0x30]))
 if i == 7:
 i2c.writeto(0x5A, bytes([0x78, 0xC0]))
 pygame.mixer.music.set_volume(1.0)
 if i < 6:
 LEDs[i].value = True
 if i == 7:
 i2c.writeto(0x5A, bytes([0x79, 0x30]))
 if i == 6:
 i2c.writeto(0x5A, bytes([0x78, 0xC0]))
 for i in range(0, len(LEDs), Len(LEDpin[i])):
 led = io.DigitalInOut(LEDpin[i])
 led.value = False
 if i == 7:
 i2c.writeto(0x5A, bytes([0x79, 0x30]))
 if i == 6:
 i2c.writeto(0x5A, bytes([0x78, 0xC0]))
 if not c_touch & pin_bit and last_touch & pin_bit:
 print(i, "released")
 if i < 6:
 LEDs[i].value = False
 if i == 7:
 i2c.writeto(0x5A, bytes([0x79, 0x30]))
 for i in range(0, len(LEDS), Len(LEDpin[i])):
 led = io.DigitalInOut(LEDpin[i])
 led.value = False
 if i == 7:
 i2c.writeto(0x5A, bytes([0x79, 0x30]))
 if i == 6:
 i2c.writeto(0x5A, bytes([0x78, 0xC0]))
 if __name__ == '__main__':
 main()
11 Starting the circuit

The physical layout of this circuit is shown in Figure 8. Start with the copper foil backing for each sensor, which provides a good ground for the sensors. Figure 9 shows a photograph of the foil, with each strip connected by a small solder blob. The foil was also kept in place using some blobs of transparent Gorilla glue. Note the cut-out for the touch sensor board screws; this was fitted on M2.5 screws and 5 mm M3 nylon spacers. Note that the board was fitted with right-angle pins to keep a low profile. The LEDs are pushed through the holes into the cover, leaving them flush with the top surface.

12 Building the circuit

The resistors were mounted flat on the board to the LEDs and, when all were wired up, were held down in place by spots of hot-melt glue in the LED holes. Then the touch sensor wires were connected as shown in Figure 10. Finally, the connections to the ribbon cable were made – shown in Figure 11, along with where they connect to a 20-pin header which fits onto the first pins of Raspberry Pi’s GPIO. Note: pass the ribbon connector through the slot in the base before soldering up the 20-pin header socket. A small wooden bar with foam glued on the back of it stops the ribbon cable being pulled out.

A small wooden bar with foam glued on the back of it stops the ribbon cable being pulled out.

13 Testing software

The simplesounds.py listing shows some simple code that allows you to test all the LEDs and trigger some simple sounds. There is a sound for each of the six note triggers, as well as the two control bars. The sounds were taken from the Sonic Pi sample files, found at /usr/share/sonic-pi/samples, and converted into WAV files using Audacity. We will go more into the details of what is needed next month, but this software requires the installation of Adafruit’s CircuitPython framework along with the MPR121 driver. We had no trouble installing this under the Raspbian Buster operating system, but found when we used earlier versions of the OS it did not install correctly, throwing up errors.

Next month, we’ll look at software to drive the touch sensor chip in a more reliable way and also a fully fledged MIDI / sound sample keypad with effects control, sequence recording, and playback.
3 ISSUES FOR £5

Subscribe by phone: 01293 312193
Subscribe online: magpi.cc/subscribe

Email: magpi@subscriptionhelpline.co.uk
Glade layout editor with C and GTK

Use this layout editor to more easily create window layouts for applications

As can be seen in the previous tutorials in this series, while creating widgets with GTK is a lot easier than doing it all from scratch by writing pixels to screen buffers, you can still end up with quite a lot of code for even a fairly simple window layout, and you do have to think quite carefully about the code you are writing to make sure the window looks the way you want it to. It’s also less than ideal that you can’t actually see what the window will look like until you run the application.

Fortunately, there is a way to work on the layout of a window without having to write all its code, and that is to use a layout editor. GTK allows the layout of widgets on a window to be defined in an XML file, which is then loaded and drawn on the screen when the application runs – you still need to link up the behaviour of any widgets to code, but the appearance of the widgets can be determined in advance. A layout editor is a useful tool to create such an XML file.

The most widely used layout editor for GTK is a tool called Glade. There are two versions of Glade, one for GTK 2 applications and one for GTK 3 applications, they aren’t interchangeable, so you need to use the correct one. The version to create GTK 3 applications is called ‘glade’. And, just to be perverse, the version you need to create GTK 2 applications is called ‘glade–3’. (Yes, that is counter-intuitive and quite annoying!)

The first thing we need to do is to install glade–3. At a Terminal, type `sudo apt-get install glade-3`, and answer yes to any prompts. You should then have an entry labelled ‘Glade’ in the Programming menu on your desktop. If you launch it, you’ll see a screen like the one shown in Figure 1.

This is the basic design screen in Glade. On the left side is a palette of all the widgets available. In the centre is the area where you actually design your window, and on the right is an area which allows you to set the properties of individual widgets.

Using Glade to create a layout file

We’ll create a simple window for our application, so the first thing we need to do is to add a top-level window. Under the palette section labelled ‘Toplevels’, the top-left entry is a GtkWindow – if you hover over it with the mouse, a tooltip will pop up with the label ‘Window’ to confirm this. So just click on this icon to add a blank window to the design area in the centre of the screen (Figure 2).

An Introduction to C & GUI Programming

For further tutorials on how to start coding in C and creating GUIs with GTK, take a look at our new book, *An Introduction to C & GUI Programming*. Its 156 pages are packed with all the information you need to get started – no previous experience of C or GTK is required!

[An Introduction to C & GUI Programming](magpi.cc/guibook)
Let’s add a VBox to put some widgets in. The widget palette has a section labelled ‘Containers’, in which the first two entries are an HBox and a VBox – click the VBox, and then move the cursor into the blank window and click within it. A dialog will pop up asking how many items you want in the VBox – set it to 2, and click ‘Create’ (Figure 3, overleaf).

You’ve now got a blank window with a line across the middle, showing the VBox. We’re going to add a label to the top, and a button to the bottom. Find these in the ‘Control and Display’ section of the palette – first click on each in the palette, and then click in the relevant section of the VBox in the design area to add them (Figure 4).

If you look at the top of the right-hand column, you’ll see the hierarchy of widgets being displayed – a GtkWindow, containing a GtkVBox, containing a GtkLabel and a GtkButton. If you click on one of the widgets in the hierarchy, the options displayed in the tabbed area at the bottom of the right-hand column will be those for that widget.

Click on the GtkLabel, and scroll through the options on the ‘General’ tab; you’ll find a section labelled ‘Edit label appearance’, including the entry ‘Label’ – use this to set the text in the label to whatever you want (Figure 5).

Click on the GtkButton, and find the Label section for it – it’s under ‘Label with optional image’ – change the label for the button to ‘Quit’.

It’s worth investigating the options on all the tabs at the bottom of the right-hand column – there are too many to go into here, but of particular interest are those on the ‘Packing’ tab; these allow you to set the expand, fill, and padding options which were available when adding widgets to boxes from code – if you play with them, you can get a good feeling for how much control you have over layout of the window, particularly when combining multiple boxes inside each other, as Glade allows you to do.

If two widgets have the same name, the layout file is invalid and will not load correctly.

The other thing that it is important to note about the right-hand column is that Glade assigns every widget a name – it can be seen in the hierarchy list at the top, and as the top entry on the ‘General’ tab. Glade assigns names as the name of the widget type followed by a number, but you can change these if you want. But there is one vital rule – every widget in a layout file must have a unique name. If two widgets have the same name, the layout file is invalid and will not load correctly.

Your button and label widgets should have the names ‘button1’ and ‘label1’, and your window should be ‘window1’ – remember these, as they are important when linking the code to the layout file. For now, save your layout as mylayout.glade by choosing the ‘Save As’ option in the ‘File’ menu.
(You can select one of two different formats on the save window – use the default GtkBuilder option.) Make sure you save the file in the same directory where you are storing your GTK source code.

Using a layout file in a GTK application

Now we need to load the layout file into some GTK code. Try the following:

```c
#include <gtk/gtk.h>

void main (int argc, char *argv[]) {
  gtk_init (&argc, &argv);

  GtkBuilder *builder = gtk_builder_new ();
  gtk_builder_add_from_file (builder,
      "mylayout.glade", NULL);

  GtkWidget *win = (GtkWidget *) gtk_builder_get_object (
      builder, "window1");
  gtk_widget_show_all (win);
  gtk_main ();
}
```

The `gtk_init` and `gtk_main` calls are the same as we have seen before, but the code between them uses a GtkBuilder, a code object which reads in and processes a layout file.

We create a GtkBuilder object:

```c
GtkBuilder *builder = gtk_builder_new ();
```

We then read the layout file into the builder.

```c
gtk_builder_add_from_file (builder,
    "mylayout.glade", NULL);
```

The widgets we created in the layout file can now all be accessed by calls to `gtk_builder_get_object`, and used as before. So we get the object which was named `window1` in the layout file.

"To make the widgets actually do things, we need to connect signals".

```c
GtkWidget *win = (GtkWidget *) gtk_builder_get_object (builder, "window1");

gtk_widget_show_all (win);
```

And we show it as before:

```c
gtk_widget_show_all (win);
```

If you build and run this code, our simple window should be displayed on the screen (**Figure 6**).

To make the widgets actually do things, we need to connect signals as before, so let’s modify our code accordingly.
void end_program (GtkWidget *wid, gpointer ptr)
{
 gtk_main_quit ();
}

void main (int argc, char *argv[])
{
 gtk_init (&argc, &argv);

 GtkWidget *builder = gtk_builder_new ();
 gtk_builder_add_from_file (builder,
 "mylayout.glade", NULL);

 GtkWidget *win = (GtkWidget *)
 gtk_builder_get_object (builder,
 "window1");

 GtkWidget *btn = (GtkWidget *)
 gtk_builder_get_object (builder,
 "button1");

 g_signal_connect (btn, "clicked",
 G_CALLBACK (end_program), NULL);

 gtk_widget_show_all (win);
 gtk_main ();
}

This time, we also get the button widget from the
builder and connect the end_program callback to it
with g_signal_connect, as before. Build and run,
and this time the button should close the program.

Using layout files can make the amount of code
you need to write a lot shorter, and the use of
Glade makes it easier to create complex
interfaces with more customisation of your
widgets. For small applications with a simple
window, it’s probably more straightforward just
to do everything in C, but for anything more
complex, using a layout file can make the code a
lot more readable.

Next steps

One thing which should be obvious to anyone who
has worked through this book and reached this
point is that GTK is a fairly huge subject! There
are dozens of widgets, and hundreds of different
ways they can be configured and used — any
comprehensive guide to using them all would run
into several hundred pages.

The best reference to GTK 2 — and the best
place to find further information if you want
to do more with it — is the official developer
documentation, which can be found online at
magpi.cc/gtk2manual. This gives far more detail
on every aspect of GTK — the reference section
listing all the functions associated with each
widget is particularly useful.

Hopefully this series of tutorials has given
you an idea of where to get started with GTK
programming, and enough of a foothold to be able
to experiment for yourself.

Happy GUI designing!
Get inspired to make something in 2020

A new year means new plans. Sometimes it’s not easy to come up with a big cool thing to work towards though, especially when it comes to making.

We’re here to help. Whether you’re making your first project or wanting to try something new, we think we have you covered with a selection of projects to try, or just get inspired by.

If you need help figuring out what tools and accessories you’ll need for all this, make sure to check out issue 89 (magpi.cc/89) for some big features that will help you out. Otherwise, let’s get started.
FUNCTIONAL PYTHON PROJECTS

Improve your coding skills

GET STARTED WITH THE TWITTER API

Automate your tweets with Python

Working with Python is fairly easy as programming languages go. You can do a lot more with it than just have it say Hello World, though, such as using it in conjunction with social media network Twitter!

In this tutorial, you’ll learn how to work with APIs – a way to interface with other programs and services – using Python and Twython, with the result being you can send tweets via Python code. This includes tweets with photos attached, and allows you to view a feed of tweets as well. Great for robots or online bots.

[getstartedwithtwitterapi](magpi.cc/twitterapi)

SHAKESPEAREAN INSULT GENERATOR

Make cursing fun

Python can be used for practical, interesting projects; however, it’s always important to have a bit of fun, like with this Shakespearean insult generator.

It will teach you about some basic programming concepts, such as reading and writing data in CSV format using Python, manipulating lists, choosing random items from a list, and how to create a basic graphical user interface (GUI). These GUI skills can easily be translated to a lot of different Python projects and make them much easier to use.

[shakespeareaninsults](magpi.cc/shakespeareaninsults)
GPIO MUSIC BOX

Learn how buttons and other input components work with Raspberry Pi

Coding is fun, but have you ever used Python code to interact with real-life objects? Using a simple push-button hooked up to the GPIO pins of a Raspberry Pi, you can control the way code runs. In this project, you’ll learn how to program with a push-button so that specific button presses will play different sounds.

This project makes use of both GPIO Zero – a library specifically created to make accessing components on GPIO easy – and Pygame, which can be used for programming video games in Python.

magpi.cc/gpioimusicbox

WHOOPi CUSHION

Build a very custom button to prank your friends

We could very easily lie here, without any reservations, that the reason we like this tutorial is because of the ingenious, DIY button that makes up a major part of it. However, it’s mainly just an excuse to make a digital whoopee cushion, which is hilarious.

To be fair, we do also like the very DIY button made out of paper plates and tin foil and clips, and it’s a great way to learn how you can bodge together your own buttons and sensors and such, while also pranking your parents, siblings, friends, roommates, or even your boss.

magpi.cc/whoopi
This stunning 224-page hardback book not only tells the stories of some of the seminal video games of the 1970s and 1980s, but shows you how to create your own games inspired by them using Python and Pygame Zero, following examples programmed by Raspberry Pi founder Eben Upton.

Available now: magpi.cc/store
Minecraft Photo Booth

Take real pictures using Minecraft Pi

Minecraft on Raspberry Pi is quite different to other versions of Minecraft in that it is designed to be hacked and modded through Python code. We particularly like this Minecraft project as it lets you use Python to bridge the gap between a virtual Minecraft world and the real world outside it.

With a Raspberry Pi Camera Module and a little code, you can take pictures of the real world using a virtual button in Minecraft. There are even ways to display your photo in Minecraft if you really want to challenge yourself.

magpi.cc/photobooth

Parent Detector

A motion-sensing camera that might help protect your belongings

A parent detector for kids and a CCTV for the grown-ups, this simple camera project allows you to control a camera using a PIR motion-sensing component. This version is very simple, but you can also add many features in the long run – like a live web interface, backup camera-based motion sensing, and even motion-tracking motor control if you really fancy going all-out on the project.

While this project uses Python and Raspbian, MotionEyeOS is an operating system for Raspberry Pi specifically built for CCTV stuff if you find the way this project works a little limiting.

magpi.cc/parentdetector
We talk about the CamJam EduKit 3 a lot – because it’s very good and very cheap. One thing that we think really elevates the build is this 3D-printed chassis that turns the kit into a more recognisable programmable robot.

The CamJam kit itself is also just a good way to learn about simple robotics with Raspberry Pi, and was created by the people that run Pi Wars, so it definitely has a very good pedigree. While it may not be what you use to enter Pi Wars, it’s definitely a step towards it.

[Link to CamJam EduKit with Chassis](magpi.cc/edurobotchassis)

MONSTERBORG

Build, program, race, and extend with the ultimate Raspberry Pi robot kit

The CamJam kit is great for beginners, but the MonsterBorg kit is fantastic for people with a couple of robots under their belt. This robot is made by the boffins at PiBorg and used in the Formula Pi autonomous robot racing championship. This means it’s very quick, very sturdy, and very hackable. It can even flip over and drive upside down.

With some extra modification, you can add more sensors and kit to the robot, with the great programming libraries available, it’s easy to incorporate them into your code, whether you’re remote-controlling it or having it run autonomously.

[Link to MonsterBorg](magpi.cc/monsterborg)
GET SOME INSPIRATION!

Where to find other projects and tutorials

RASPBERRY PI PROJECTS

The Raspberry Pi Projects website is a massive resource for all things Raspberry Pi, from setting up your first Raspberry Pi to making robots and real-life photo-booths. You can filter by hardware, components, programming languages and more, and it’s a great way to learn just how much your Raspberry Pi can do.

magpi.cc/projectsonline

INSTRUCTABLES

A veteran maker website that is chock-full of incredible, step-by-step projects that you can try to follow along to. You can find something for just about any type of hardware, and it’s easy to drill down to specific types of projects, or even just see what popular Raspberry Pi projects are on there.

instructables.com

THE OFFICIAL RASPBERRY PI PROJECTS BOOK VOL. 5

The fifth volume of our Official Raspberry Pi Projects Book contains 200 pages of amazing projects and tutorials that should help give you a huge boost of inspiration. There’s also a dedicated Raspberry Pi 4 beginner’s section if you’re brand new to Raspberry Pi.

magpi.cc/projects-book5

HACKSTER

Hackster is a newer site, but it covers a similar selection of projects to Instructables, albeit with a stronger bend towards learning computing skills. You can still filter project types, but it’s easier to differentiate them by difficulty to make sure you don’t quite get in over your head.

hackster.io
Join us as we lift the lid on video games

Visit wfmag.cc to learn more
GROUP TEST

Raspberry Pi thermal cases

These cases keep Raspberry Pi 4 feeling, and looking, cool. By Gareth Halfacree

Raspberry Pi 4 – like all the other members of the ever-growing Raspberry Pi family – is entirely usable as is, and plenty of people appreciate the aesthetic of a bare board on a desk.

For those who don’t, there are a wealth of cases – both first- and third-party – available. You’ll find one, the Raspberry Pi 4 Stand, mounted on the cover of this magazine, while the others in this group test can be found at all major retailers.

Each case here has been tested for aesthetics, complexity of assembly, and its performance in keeping Raspberry Pi 4 running cool.

How we tested

Each case was given a heavy synthetic workload to represent a worst-case scenario. This workload, which stresses both the central and graphics processors, runs for ten minutes followed by a five-minute cooldown period. Full details of the workload can be found in The MagPi issue 88, at magpi.cc/88.
Raspberry Pi 4 Stand

Made from a single piece of acrylic, the Raspberry Pi 4 Stand is as pure as it gets.

The Raspberry Pi 4 Stand is about as simple as a case could possibly be. Laser-cut from a single piece of acrylic, there’s no complex assembly required: simply slot the stand between the Power over Ethernet (PoE) header and Ethernet port of Raspberry Pi 4 and pop it on your desk.

The stand is designed to improve cooling by aligning Raspberry Pi 4 vertically, rather than flat on a desk. Previous thermal testing in issue 88 showed this is surprisingly effective, and the Raspberry Pi 4 Stand solves the stability issue which comes from balancing the board on its edge.

There’s a bonus trick up the Raspberry Pi 4 Stand’s sleeve, too: it holds up to three Raspberry Pi 4 boards side-by-side, making a very cost-effective computing cluster. Whether you install one, two, or three boards, the Raspberry Pi 4 Stand is surprisingly stable and not unattractive – and it retains access to all ports and headers.

The Raspberry Pi 4 Stand holds up to three boards side-by-side, making a very cost-effective cluster.

Verdict

The Raspberry Pi 4 Stand is smart, free, and the only case on test to support more than a single board. Its cooling performance, though, is the weakest.

Note! We don’t score our own products. [We think our Raspberry Pi 4 Stand is perfect – Ed.]

SPECs

- **Dimensions:** 120×20×2.8 mm
- **Material:** Acrylic
- **Weight (inc. one Raspberry Pi 4):** 54 g
- **Number of boards supported:** Up to 3
- **Cooling method:** Vertical

Thermal imaging

The Raspberry Pi 4 Stand improves the bare performance, but Raspberry Pi 4 still gets hot under sustained synthetic load.

Thermal load

Without additional cooling, the Raspberry Pi 4 Stand can’t prevent Raspberry Pi 4 from hitting its throttle point during testing.

```
<table>
<thead>
<tr>
<th>Time (Seconds)</th>
<th>Frequency (MHz)</th>
<th>Temperature (Degrees Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>850</td>
<td>45</td>
</tr>
<tr>
<td>400</td>
<td>1100</td>
<td>55</td>
</tr>
<tr>
<td>600</td>
<td>1350</td>
<td>65</td>
</tr>
<tr>
<td>800</td>
<td>1600</td>
<td>75</td>
</tr>
</tbody>
</table>
```

Raspberry Pi thermal case group test | magpi.cc | 67
Flirc Raspberry Pi 4 Case

Designed to blend in with home theatre products, the Flirc case is undeniably attractive.

Created as a means of drawing attention away from Raspberry Pi 4 when used as part of a home theatre installation, the Flirc combines a matte-finish silver aluminium housing with soft-touch black plastic to the top and underside. It’s an understated design, but one which does compromise efficacy: the plastic lid covers much of the surface area of the aluminium case, reducing its ability to bleed off heat.

The case itself makes contact with Raspberry Pi 4’s system-on-chip (SoC) via a single hollow pillar and a bundled thermal interface material pad. Installation is simple, requiring only two protective sheets to be removed from the pad, and four screws to hold the case together.

For those not interested in attractive home theatre setups, though, the Flirc comes with a major drawback: it offers no ready access to the GPIO, CSI, or DSI headers, though all external ports are easily reached.

Verdict

Unless you need the GPIO, CSI, or DSI headers, the Flirc’s few design flaws are unlikely to matter: the case keeps Raspberry Pi 4 well clear of its thermal throttle point.

8/10

Thermal imaging

The plastic lid prevents the Flirc from cooling entirely efficiently, while the hollow pillar can be seen as a cooler spot to the centre-left.

Thermal load

Even with the lid in place, the Flirc case easily cools Raspberry Pi 4 during the synthetic workload run.
The Argon One case packs a whole lot of functionality into a surprisingly small footprint. A daughterboard connects to Raspberry Pi 4’s AV and HDMI ports to re-route these to the rear of the case, alongside Ethernet and USB, while a second board pulls the GPIO header out to a colour-coded and silk-screen labelled header hidden under a magnetic cover on the top.

The same board powers a fan, which is active when the temperature exceeds a user-configurable limit, and includes a smart power button which can safely turn Raspberry Pi 4 on and off with a press. There’s even space to route out CSI and DSI cables for a camera or display.

Cooling performance is impressive. The Argon One prevented Raspberry Pi 4 from throttling without even needing to activate the fan – aided by the entire aluminium surface acting as a heatsink for the SoC and RAM chips.

Impressively feature-packed, the Argon One offers a lot for your money – including temperature-controlled active cooling.

Argon One for Raspberry Pi 4

- **Argon 40**
- magpi.cc/argon1
- £19 / $25

Includes a smart power button to safely turn Raspberry Pi 4 on and off.

Includes a smart power button to safely turn Raspberry Pi 4 on and off.

Thermal imaging

There’s enough metal in the Argon One’s aluminium upper shell to keep Raspberry Pi 4 cool even under sustained load.

Thermal load

After ten minutes of heavy load, the Argon One didn’t even need to use its temperature-controlled fan once.

Verdict

There’s little to fault with the Argon One’s design. Cabling is tidied, the GPIO header made more readily accessible, and there’s more than enough aluminium to keep Raspberry Pi 4 cool.

10/10
The CooliPi stands out from the competition not just owing to its size and weight – it’s by far the heaviest case on test – but also by being at least partially open-source: while the custom-milled heatsink is available exclusively from Sensoreq, the plastic lower section can be printed on any 3D printer.

That’s only part of the story. CooliPi is a family of products, not just a case, and optional extras – some of which are also 3D printable – include a 90-degree adapter for Raspberry Pi 4’s GPIO header, a HAT mount, and even a housing for an optional 5V fan.

The latter shouldn’t be necessary outside the most extreme environments: in testing, the heavy heatsink of the CooliPi – which contacts the SoC, RAM, and USB 3.0 controller chips, with an optional copper shim available to cool the power management IC (PMIC) – was more than up to the job of cooling Raspberry Pi 4.

Having a very heavy aluminium heatsink lets the CooliPi absorb more heat than the competition.

The CooliPi’s large heatsink made it by far the best-performing cooler in the group.
A compact two-part design, a few flaws don’t stop this case performing well

A relatively straightforward two-part design, this all-aluminium affair aims to provide cooling and protection without taking up too much space – its overall footprint is only marginally larger than Raspberry Pi 4 on its own.

There are a few issues, though, starting with its design. Like all aluminium cases, Pimoroni’s heatsink case includes pillars designed to contact hot-running chips and transfer the heat to the outside of the case. The installation instructions, however, tell you to only add a thermal transfer pad to the one in contact with the central SoC. It turns out that this is because the RAM pillar targets a chip which doesn’t get hot, while the pillar for the USB controller is both too small and in the wrong place.

This, and a patchy anodised finish, aside, the case does as promised: it prevents Raspberry Pi 4 from throttling, and keeps all ports and headers – including GPIO, DSI, and CSI – readily accessible.

The pillar for the USB controller is too small and in the wrong place

Verdict

The Pimoroni Heatsink Case does an acceptable job of cooling Raspberry Pi 4, but feels like a missed opportunity. Fixing the USB pillar and adding one for the PMIC would have been welcomed.

SPECs

- **DIMENSIONS:** 88×56×22.4 mm
- **MATERIAL:** Aluminium
- **WEIGHT (INC. ONE RASPBERRY PI 4):** 149 g
- **NUMBER OF BOARDS SUPPORTED:** 1
- **COOLING METHOD:** Passive heatsink (SoC only, RAM and USB 3.0 controller optional)
- **EXTRAS:** Thermal transfer material pads, hex key

Thermal imaging

With so little metal to play with, the Pimoroni heatsink case gets noticeably warmer than the competition.

Thermal load

Even contacting only the SoC, the case keeps Raspberry Pi 4 well below its throttle point.
The Pi Hut Raspberry Pi 4 Case 2.0

A wholly acrylic creation, The Pi Hut’s case relies on a small always-on fan to keep Raspberry Pi 4 cool.

SPECs
- **Dimensions:** 97.7×69.7×36.3 mm
- **Material:** Acrylic
- **Weight (inc. one Raspberry Pi 4):** 125 g
- **Number of boards supported:** 1
- **Cooling method:** Fan

Verdict
The Pi Hut case is a cheap option. Despite including active cooling, it fails to outperform any of the passive options on test – bar only the in effect uncooled Raspberry Pi 4 Stand.

4/10

The Pi Hut’s custom-designed Raspberry Pi 4 case comes in sheet form, laser-cut from a mixture of coloured and transparent acrylic. Assembly is relatively straightforward, though the plastic mounting pillars and screws provided can’t withstand repeated assembly and disassembly, and there are no thermal interface pads required.

Instead, cooling is provided by a single 5 V cooling fan installed beneath vents in the transparent lid. By default, this is set to suck air out of the case and away; flipping it around to blow offers a minor improvement in cooling performance at the cost of a dramatic increase in noise.

There’s no software or speed control for the fan, and it ties up the 5 V and GND pins on the GPIO header – which is inaccessible once assembled. The CSI and DSI headers are likewise locked away, though cables for these can at least be routed between the walls and the case lid.

Thermal imaging
The acrylic lid effectively insulates Raspberry Pi 4, leaving the fan vent as the only place for heat to escape.

Thermal load
Despite its fan, The Pi Hut case’s cooling performance is the second-worst on test – behind only the Raspberry Pi 4 Stand.
Thermal performance isn’t the be-all and end-all of choosing a case for Raspberry Pi 4 – in fact, as our testing in issue 88 proved, under most real-world workloads Raspberry Pi 4 is more than capable of handling itself.

It’s little surprise, then, to find every case on test – except the Raspberry Pi 4 Stand – passed the demanding thermal throttle benchmark with flying colours.

What is perhaps surprising is the variance within the tests. The Pi Hut case’s fan isn’t as effective as passive options like the Pimoroni Heatsink Case and the Flic – and while the CooliPi is the best performer overall, its high price and bulk make for a difficult case to recommend for most use-cases.

Under real-world conditions, any of the cases – including the Raspberry Pi 4 Stand – should prove more than adequate to prevent thermal throttling. Only those operating Raspberry Pi 4 in relatively extreme environments need worry about cooling – and there’s nothing wrong with picking your case based on features, accessibility, price, or aesthetics instead, opening up the whole group as potential winners depending on personal taste and budget.

Any should prove more than adequate to prevent thermal throttling.

Winner: Argon One

The Argon One ticks almost every box: it’s attractive, includes a wealth of features, cools well, and won’t break the bank.
Raspberry Pi has its fair share of DAC audio boards offering high-quality sound output, but Pimoroni’s new Pirate Audio range adds a mini LCD to show music track details and album art. In this review we’re focusing on the Pirate Audio Headphone Amp, but we also tried out the other three models: Line-out, 3W Stereo Amp, and Speaker. We understand that another model is also set to be added to the range soon.

All the boards have the same slimline pHAT form factor that fits perfectly onto a Raspberry Pi Zero, although they’ll work with any 40-pin model. The main difference between them is how the sound is processed and output. On the Headphone Amp, audio is amplified and then output via a 3.5 mm jack – just plug in your wired headphones or earbuds. The positioning of the jack on the side of the board means you may need to take your Raspberry Pi out of its case, or raise it up using a booster header.

Creating your own mini MP3 player with this DAC audio board, complete with an LCD to show track details. By Phil King

Rasperry Pi has its fair share of DAC audio boards offering high-quality sound output, but Pimoroni’s new Pirate Audio range adds a mini LCD to show music track details and album art. In this review we’re focusing on the Pirate Audio Headphone Amp, but we also tried out the other three models: Line-out, 3W Stereo Amp, and Speaker. We understand that another model is also set to be added to the range soon.

All the boards have the same slimline pHAT form factor that fits perfectly onto a Raspberry Pi Zero, although they’ll work with any 40-pin model. The main difference between them is how the sound is processed and output. On the Headphone Amp, audio is amplified and then output via a 3.5 mm jack – just plug in your wired headphones or earbuds. The positioning of the jack on the side of the board means you may need to take your Raspberry Pi out of its case, or raise it up using a booster header.

It delivers excellent sound quality with a warm tone, plenty of fine detail, and sufficient bass for our ears.

Setting it up
Getting started with Pirate Audio wasn’t quite as simple as we anticipated, although an online guide (magpi.cc/pirateaudioguide) has since appeared that should prove very helpful. Installing the default software itself is simple enough, by entering three commands in a Terminal window. This does everything needed to configure the DAC and enable SPI for the LCD.

Based around the Mopidy music server daemon (mopidy.com), the software enables you to play local music files or stream tracks from Spotify, although you’ll need a premium account for that. The Spotify extension for Mopidy is installed automatically, along with one for the user-friendly Iris web interface.

The latter proves essential as you’ll need to use it to actually start playing music on the board. Point a web browser to your Raspberry Pi’s IP address appended with ‘.6680/iris’ to access the web interface – you can do this from another computer or on the same Raspberry Pi if it’s connected to a monitor.

It delivers excellent sound quality with a warm tone, plenty of fine detail, and sufficient bass for our ears.

Setting it up
Getting started with Pirate Audio wasn’t quite as simple as we anticipated, although an online guide (magpi.cc/pirateaudioguide) has since appeared that should prove very helpful. Installing the default software itself is simple
Accessing local media files required a change to the Mopidy config file to reassign the local directory from the default to our Music folder, then running a local scan in Iris to find the files.

For Spotify streaming, you’ll first need to authorise the device via the Mopidy website, alter the config file to enable Spotify and add your credentials, and then sign in again via Iris to start using Spotify from its interface. Tip: if you still get an error when trying to play files, try restarting the server from Iris’s settings.

Music to our ears
The good news is that once you get everything set up, the Pirate Audio board’s 24-bit, 192kHz DAC delivers excellent sound quality with a warm tone, plenty of fine detail, and sufficient bass for our ears. At first, we found it a bit too loud – until we flicked the switch on the rear of the board from high- to low-gain (recommended in most cases).

The volume level can be adjusted using two tiny control buttons on either side of the LCD. The other two buttons present are for play/pause and skip to next track in the queue, album, or playlist – there’s no way of returning to previous songs unless you use the web interface.

We do love that built-in LCD, though, which shows you the track details on a background of the blurred album artwork, with a song progress bar at the bottom.

PIRATE AUDIO RANGE

- **LINE-OUT**
 Aimed for use with powered speakers or by connecting to a hi-fi line input, it features line-level digital audio and a 3.5 mm stereo jack.

- **3W STEREO AMP**
 This board features four tiny push-fit terminals on the rear to attach wires from passive speakers. There’s also a switch for stereo and mixed-down mono modes.

- **SPEAKER**
 At only 1W, the small built-in speaker isn’t very powerful and sounds rather tinny, but this board is ideal when you need integral audio for a portable project.

Verdict
A little tricky to get it all working, but once set up, the resulting audio is of excellent quality and the LCD is great for showing track details and artwork.
If you’re serious about retro gaming and would like to be able to play all the games in all the places, the RetroFlag GPi case might just be your new best friend. More than a simple enclosure for the Raspberry Pi Zero, this rather familiar-looking unit is a full-blown battery-powered gaming console that (just about) fits in the palm of your hand.

Game on
The clever design of the GPi replicates that of eighties handheld consoles, including a cartridge-like unit that slides out of the rear and is quickly disassembled to reveal space for a Raspberry Pi Zero. A very neat ‘pogo’ mounting system means no header or soldering is required: a Raspberry Pi Zero just slots in and pressure maintains the contacts. The reassembled unit then slots into the main body and you’re ready to go. You can even access the microSD card without removing the ‘cartridge’. Power is supplied by three AA batteries or a supplied USB cable.

Full and clear instructions are provided to install support for the gamepad buttons and also the on/off switch that provides easy and safe shutdown. We found the unit easy to assemble and had RetroPie running in no time at all. We were particularly impressed by the screen, which uses IPS rather than TFT to give a razor-sharp display from any angle without any of the common side-lighting issues. A small audio speaker is built-in, with the option of headphones. The case itself is injection-moulded, solid, and beautifully made.

Verdict
This is one of the best gaming cases we’ve seen. A great design, easy assembly and, most of all, great fun to use. An essential purchase for any retro gamer.

PJ Evans takes retro gaming on the go with this eighties-handheld-inspired case with screen.

DIMENSIONS:
138×81×32 mm

WEIGHT:
138 g

DISPLAY:
2.8-inch IPS

POWER:
3 × AA batteries or USB

COMPATIBILITY:
Raspberry Pi Zero or Zero W (not Zero WH)

SPECS

Although bulky like classic 1980s handhelds, it feels comfortable in hand and the controls are well-placed.

10/10
THE Official
RASPBERRY PI
PROJECTS BOOK
VOLUME 5

200 PAGES OF RASPBERRY PI

- Use Raspberry Pi 4 as a desktop PC and 4K home media centre
- Be inspired by incredible projects made by other people
- Learn how to code and make with our step-by-step tutorials
- Find out about the top kits and accessories for your projects

Buy online: magpi.cc/store
10 Best: Game making projects

When you have a bit of a coding hobby, you inevitably end up thinking about making your own game. Luckily, in this brand new decade, it could not be easier to find resources to help you get started. Here’s how to begin making games with a Raspberry Pi.

▲ Scratch Cat goes skiing
Scratch-based gaming
Scratch is well suited to making games, with code scripts specifically tied to sprites/images. If you fancy wanting to learn the basics of coding while making a game in the process, check out this fun skiing game.

magpi.cc/catski

▲ Interactive tabletop RPG map
Roll for initiative
Upgrade your board games and tabletop games with this interactive map screen that can be used by a game master to gradually reveal dangerous dungeons or put up the next game board to play on.

magpi.cc/86

▲ Build an arcade cabinet
Learn how controllers work
What better way to learn how you can attach all the necessary peripherals – buttons, joysticks, speakers, lights, screens, etc. – to a Raspberry Pi for games than building a full arcade cabinet!

magpi.cc/63

▲ PICO-8
128 by 128 pixels of fun
Over several issues of The MagPi, Dan Lambton-Howard shows you how to use PICO-8 to create your own 8-bit wonder game made up of very limited pixels. Time to get creative.

magpi.cc/83

Learn how to make game software and hardware with these cool projects.
How to program games
with the LÖVE gaming engine

The next step
LÖVE uses Lua, a popular language
in game development, and this guide
takes you through how it works in
relation to Scratch – very useful for
people just starting out with coding
and game making.
magpi.cc/lovegame

3D robot Pac-Man

A reimagined classic
An oldie but a goodie, Pac-Man
actually has AI for the individual
ghosts, giving them unique
movements/personalities. This
version brings it to real life, adding an
extra dimension in the process.
magpi.cc/66

Flappy astronaut

Simple and educational
CCTV cameras with Raspberry Pi are not too difficult to put together. We
like this project because it also uses computer vision and face detection to
recognise known people.
magpi.cc/flappyastro

Make games with Python

Shoot-'em-up with Python
We put out an Essentials guide in 2015 which included a step-by-step guide
to making a shoot-'em-up space game using Pygame, an amazing game
programming library in Python.
magpi.cc/gameswithpython

Simon says build this
This Simon clone device built by Les Pounder is a great example
of a more physical game, and could even be used for the basis of
a controller for a virtual game displayed on a screen.
magpi.cc/pymon

Make games in C

Delve deeper into dev
A while ago we had a long-running series on coding games in C
in The MagPi, starting in issue 65. Covering coding as well as basic
game design theory, it was written by Brian Beuken, who teaches
game programming at university.
magpi.cc/65

10 Best game making projects
Learning Python in 2020? PJ Evans catches up on the latest resources

EduBlocks

As great a choice as Python is for your first adventure in coding, many start with Scratch (scratch.mit.edu), a fantastic free online coding environment that teaches the fundamentals of coding using visual ‘blocks’ to build up the set of instructions. Scratch is taught all over the world and is especially popular in schools. So what happens when it’s time to transition to a more formal form of coding? Scratch can only take you so far, but the move to ‘all text’ Python can be daunting, especially to younger coders.

Joshua Lowe agreed and (at the age of just twelve) created EduBlocks, which bridges the gap between visual block-based coding and Python. Simply create your Scratch-style program, click a single button, and pow, there’s the equivalent Python code ready to cut and paste.

EduBlocks is online and completely free. If you’re concerned about the next step in your coding adventure, this is the ideal place to play and experiment. You’ll see that there isn’t that much difference after all. The main site is supported by an extensive collection of tutorials and worksheets, many designed for Raspberry Pi.

Free Online Courses

Learning that won’t hurt your wallet

YOUTUBE
Yes, it sounds obvious, but it’s hard to overstate how many great resources are available on YouTube. The offerings from freeCodeCamp and Programming With Mosh are particularly recommended for Python beginners.

magpi.cc/youtubepython

DEEP LEARNING PREREQUISITES: THE NUMPY STACK IN PYTHON
Numpy (an extensive mathematical toolkit) was a game-changer, promoting Python to a major player in machine learning. This free course gives you a solid grounding in these advanced principles.

magpi.cc/udemynumpy

PROGRAMMING FOR EVERYBODY (GETTING STARTED WITH PYTHON)
How about learning about Python from the University of Michigan? This highly rated beginner’s course features both tutorials and assignments, is available for free, and comes with online support from instructors.

coursera.org/learn/python
Learning IoT with Python and Raspberry Pi

This impressive 760-page epic has been created by accomplished academics to provide a complete course that goes from your first line of code to creating real-life Internet of Things projects. Although it’s intended to be picked up by academic institutions and implemented as a course, there’s no reason not to self-teach if that’s the style that works for you.

As well as a solid grounding in Python, from first principles to advanced techniques such as threading, its detailed projects include reading environmental data with Sense HAT, using GPS, and robot control. In addition to physical computing, there are many projects on interacting with the ‘cloud’, such as storing remote data and alerting.

CheckiO

What’s better than learning through gaming? CheckiO is a 100% online series of courses intended for the classroom, although individuals are also welcome. Through a series of over 200 tutorials, worksheets, and challenges, the participant starts with the fundamentals and writes more and more complex code as the principles of gaming are revealed. Throughout, there’s an excellent support system, including the ability to discuss solutions with your peers. A scoring system and awards make this great fun for the classroom. If getting into the games industry appeals, or you just fancy creating some homebrew and don’t know where to start, this might be the perfect choice.

Premium Python

Serious about Python knowledge? These are for you

PYTHON – FROM BEGINNER TO WINNER

This is a more structured course than others we’ve mentioned here. A total of three hours of video and 21 downloadable resources with coding exercises. Recommended for those wanting to learn in bite-size sections.

CODE THE CLASSICS

What could be better than learning through recreating the golden era of arcade gaming? This book (yes, from ourselves) teaches many fundamental principles of code while having some classic fun.

CODE COMBAT

Although aimed at the classroom, Code Combat is an epic collection of Python programming challenges wrapped in a sophisticated and fun user interface. You can play around for free.
Bringing computer science to underprivileged children in India is a priority for this engineer turned educator

Like a few educators in the Raspberry Pi and digital making community, Pranjali Pathak of the Pi Jam Foundation started out life as an engineer before becoming a teacher. She’s been a fellow for Teach for India, where she taught students from grade 3, and brought that experience to the Pi Jam Foundation as a Program Lead, making sure educators are supported when teaching computing.

“Pi Jam Foundation is a Section 8 (not-for-profit) organisation,” Pranjali tells us. “The organisation is entirely impact driven and aims to provide all students from under-resourced schools [with] computing and problem-solving skills, which are essential for them to succeed in the 21st century workplace. Using low-cost, open-source technology, Raspberry Pi and a contextual research–based curriculum coupled with innovative pedagogy, Pi Jam Foundation aims to provide quality computer education to over 100,000 students across India by 2022. We have successfully brought a globally relevant, yet contextual computer science education to 8000+ students across under-resourced schools across urban, suburban, and rural geographies of the country.”

What are your links to Raspberry Pi?
We work extensively on Raspberry Pi [computers] across all our Pi Lab programs and feel the Code Clubs would enable us to enhance our curriculum and provide students from different grades and diverse economic backgrounds access to knowledge at par with global standards. Also, being [more] affordable than existing PCs in the market lends itself to use in the context we operate in, i.e. under-resourced public schools.

What kind of events have you put on/supported?
Pi Lab is an award–winning flagship programme that enables a complete computer science ecosystem (Raspberry Pi, best of open-source tools, and highly contextualised curriculum and teacher training.
programmes) that ensures year-long learning and allows kids to explore, tinker, and create. Currently, Pi Jam is impacting 8000+ number of students through 40 Pi Labs across […] the country.

The Pi Labs, especially the ones in under-resourced schools, have been places of immense transformation of thought and possibility for our students. They have seen technology and computer science as something the more privileged classes had access to, and using Raspberry Pi [computers] has helped us give them the same (if not a more focused and holistic) access.

We see career possibilities change as they experience the true creativity behind technology, and have even encountered them sharing with us that they always assumed technology to be boring, but the Code Clubs were very exciting for them to be a part of.

Annual Showcase ‘Makers Factory’: Pi Jam’s Annual Showcase takes place every February, where our students are provided with a platform to present their solutions in the form of technology prototypes to problems identified by them.

Hackathons: for students, members from the community, mothers of the Pi Lab students, [and] individuals from corporates.

What kind of people attend these events?
The students hail from communities that have a rich mix of people from different cultures, beliefs, and languages. The lack of resources and rampant poverty unite residents of this locality. Most of the communities are home to tens of thousands of children, many of whom lack access to a good-quality education.

All the students come from low-income households, and a majority of their parents are first-generation migrants from other states. Additionally, most of the students do not have any formal knowledge or prior experience to computers across these schools.

“ Pi Lab is an award-winning flagship programme ”

Rotten fruit detector
Rukaiya’s parents were fruit and veg sellers; however, a problem with the vendor meant some fruit was rotting and affecting the rest of the supply. Unable to inspect the boxes by eye, Rukaiya created a rotten fruit detector, which used a stick with an MQ3 sensor on the end which would smell out rotting fruit in the box.

Open manhole alert
During the monsoon season, it’s not uncommon for autos (motorised rickshaws) to get stuck in manholes. Several students had to abandon a taxi auto at the urging of their driver and felt bad for him, so decided to create a system that warned the driver in the future of open manholes in the road ahead. It’s incredibly accurate as well, even being able to detect if a manhole is slightly tilted open.
As we mentioned last issue, Raspberry Pi is turning eight this year! Or two, if you only count leap years. Either way, in honour of this birthday, any Raspberry Jams taking place between Saturday 15 February and Sunday 15 March can be used to celebrate Raspberry Pi!

Here are the events that have been planned by the time we go to print. For a more up-to-date list, head to rpf.io/jam.

UK

<table>
<thead>
<tr>
<th>Event</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLC Raspberry Jam</td>
<td>Buxton</td>
</tr>
<tr>
<td>CamJam</td>
<td>Cambridge</td>
</tr>
<tr>
<td>Chelmsford Raspberry Jam</td>
<td>Chelmsford</td>
</tr>
<tr>
<td>Exeter Raspberry Jam</td>
<td>Exeter</td>
</tr>
<tr>
<td>Gateshead Raspberry Jam</td>
<td>Gateshead</td>
</tr>
<tr>
<td>Leeds Raspberry Jam</td>
<td>Leeds</td>
</tr>
<tr>
<td>London Raspberry Pint</td>
<td>London</td>
</tr>
<tr>
<td>Beeston Raspberry Jam</td>
<td>Nottingham</td>
</tr>
<tr>
<td>South Devon Tech Jam</td>
<td>Paignton</td>
</tr>
<tr>
<td>Cornwall Tech Jam</td>
<td>Redruth</td>
</tr>
<tr>
<td>Sheffield Raspberry Jam</td>
<td>Sheffield</td>
</tr>
<tr>
<td>Southend Raspberry Jam</td>
<td>Southend-on-Sea</td>
</tr>
<tr>
<td>York Big Birthday Pi Jam</td>
<td>York</td>
</tr>
</tbody>
</table>
Big Birthday List

USA

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raspberry Pi Birthday Jam @ California High School</td>
<td>California</td>
</tr>
<tr>
<td>Fresno Ideaworks Pi Day Party</td>
<td>California</td>
</tr>
<tr>
<td>Raspberry Jam Catoosa</td>
<td>Georgia</td>
</tr>
<tr>
<td>Jelly’s Raspberry Jam Party</td>
<td>Maryland</td>
</tr>
<tr>
<td>Raspberry Pi Big Birthday Jam Ann Arbor</td>
<td>Michigan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos Raspberry Jam</td>
<td>New Mexico</td>
</tr>
<tr>
<td>TEC Raspberry Jam</td>
<td>Tennessee</td>
</tr>
<tr>
<td>Raspberry Pi 8th Anniversary Celebration!</td>
<td>Utah</td>
</tr>
<tr>
<td>Columbia Basin Jam</td>
<td>Washington</td>
</tr>
<tr>
<td>Roanoke Raspberry Jam</td>
<td>Virginia</td>
</tr>
<tr>
<td>Raspberry Jam WV</td>
<td>West Virginia</td>
</tr>
</tbody>
</table>

Europe

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raspberry Jam Zelzate</td>
<td>Belgium</td>
</tr>
<tr>
<td>Varna Raspberry Jam</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>Raspberry Jam des inspirés 2020</td>
<td>France</td>
</tr>
<tr>
<td>AmsterJam</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CoderDojo Baarle Raspberry Birthday party</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Bhopal Raspberry Jam</td>
<td>India</td>
</tr>
<tr>
<td>PiWars</td>
<td>Turkey</td>
</tr>
<tr>
<td>Pi World Raspberry Pi Jam</td>
<td>India</td>
</tr>
<tr>
<td>Atria Labs Raspberry Jam</td>
<td>India</td>
</tr>
<tr>
<td>ResPro Labs Raspberry Pi Jam</td>
<td>India</td>
</tr>
<tr>
<td>Suñu Raspberry Jam</td>
<td>Senegal</td>
</tr>
<tr>
<td>Bangkok Raspberry Jam</td>
<td>Thailand</td>
</tr>
<tr>
<td>Davao Raspberry Birthday Jam</td>
<td>Philippines</td>
</tr>
<tr>
<td>Abhinav Raspberry Jam</td>
<td>India</td>
</tr>
<tr>
<td>Bhojpur Raspberry Jam</td>
<td>India</td>
</tr>
<tr>
<td>Pi Jam @ PiLabs</td>
<td>India</td>
</tr>
<tr>
<td>Pi Jam 2020 @ SRiX</td>
<td>India</td>
</tr>
<tr>
<td>Raspberry Jam NextTech</td>
<td>India</td>
</tr>
<tr>
<td>Bangalore Raspberry Jam</td>
<td>India</td>
</tr>
</tbody>
</table>

Rest of the World

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litoral Raspberry Jam</td>
<td>Argentina</td>
</tr>
<tr>
<td>Raspberry Pi JAM</td>
<td>Argentina</td>
</tr>
<tr>
<td>Santiago del Estero, Argentina Raspberry Jam</td>
<td>Argentina</td>
</tr>
<tr>
<td>Inverell Raspberry Jam</td>
<td>Australia</td>
</tr>
<tr>
<td>Calango Raspberry Jam</td>
<td>Brazil</td>
</tr>
<tr>
<td>Raspberry Jam São Paulo</td>
<td>Brazil</td>
</tr>
<tr>
<td>Pi Jam @ PiLabs</td>
<td>India</td>
</tr>
<tr>
<td>Raspberry Pi Jam Kochi</td>
<td>India</td>
</tr>
<tr>
<td>Votanikos Jam</td>
<td>Greece</td>
</tr>
<tr>
<td>Pi Jam 2020 @ SRiX</td>
<td>India</td>
</tr>
<tr>
<td>Raspberry Jam NextTech</td>
<td>India</td>
</tr>
<tr>
<td>Itierio Boys' High School Raspberry Jam</td>
<td>Kenya</td>
</tr>
<tr>
<td>Perak Technology Academy: Raspberry Pi Jam</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Jam Kathmandu</td>
<td>Nepal</td>
</tr>
<tr>
<td>Ikeja Tech Mates Raspberry Jam</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Pi Day with Free City Hacks</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Davao Raspberry Birthday Jam</td>
<td>Philippines</td>
</tr>
<tr>
<td>Suñu Raspberry Jam</td>
<td>Senegal</td>
</tr>
<tr>
<td>Bangkok Raspberry Jam</td>
<td>Thailand</td>
</tr>
<tr>
<td>Dubai Raspberry Birthday Jam</td>
<td>United Arab Emirates</td>
</tr>
</tbody>
</table>
Every Monday we ask the question: have you made something with a Raspberry Pi over the weekend? Every Monday, our followers send us amazing photos and videos of the things they've made. Here is a small fraction of them. Follow along at the hashtag #MagPiMonday.

1. This looks like a scene from Short Circuit
2. Good luck with the book!
3. 3D printers make custom robot work so very easy
4. Clock stretching is a tricky bit of code magic
5. Good use of an Energenie
6. This monster looks familiar. Crumbs, we can’t place it...
7. The image doesn’t do this justice: it is extremely fast

Hello, I’ve been 3D printing a mount to link the Raspberry Pi camera with Lego Technic (for a robot of course), and mentoring Raspberry Pi makecode Arcade at @CoderDigiHam with @rhayer.

I’ve been testing out the AmbiMate M54 sensor package from @FiConnectivity to create an emergency sensor for a robot that can detect people! ...and finding out about the perils of i2C clock stretching: recantha.co.uk/blog/?p=19880

I made my fastest Raspberry Pi robot yet:

First robot build of 2020. I present Turbo Tiny. A fast bed chassis for my robot HAT.
Best of the rest! Here are some other great things we saw this month

SANIA BOX

This is a Kickstarter for a special add-on board for Raspberry Pi that is aimed at teaching code to eight-year-olds, with an initial idea coming from a 13-year-old. The add-on board has LEDs, a push-button, thermal sensor, touch sensor, light sensor, and an environmental sensor for gases.

► kck.st/38fj9pd

NOVELTY RADIO PC

We think this is very cute – Reddit user carecoin took a tiny novelty radio and put a Raspberry Pi Zero W and screen into it. There’s no banana for scale, but it’s very small.

► magpi.cc/noveltypc

CROWDFUNDING A PROJECT?

If you’ve launched a Raspberry Pi-related project, let us know!
magpi@raspberrypi.org

Sound up your Raspberry Pi

hifiberry.com
Raspberry Jam
Event Calendar

Find out what community-organised Raspberry Pi-themed events are happening near you...

01. Exeter Raspberry Jam
Saturday 1 February
Exeter Library, Exeter, UK
magpi.cc/JM5Qp7
A meeting for everyone interested in all things microcomputers, microcontrollers, robotics, and making.

02. St Louis Raspberry Pi Jam
Saturday 1 February
Danforth Center, St Louis, MO, USA
magpi.cc/HunpKi
An event where makers can work in a collaborative group on a project, or just learn about makers and making.

03. Melbourne Raspberry Pi Hackers
Sunday 2 February
Library at The Dock, Melbourne, VIC, Australia
magpi.cc/cHa3y8
A meet-up open to everyone with an interest in electronics, robotics, making, 3D printing, laser cutting, etc.

04. Barnstaple Raspberry Jam
Saturday 8 February
Barnstaple Library, Barnstaple, UK
magpi.cc/sVtkkf
A friendly bunch of Raspberry Pi enthusiasts who meet once a month to share ideas. All ages and abilities welcome.

05. Cornwall Tech Jam
Saturday 8 February
Bodmin Library, Bodmin, UK
cornwalltechjam.uk
For anyone interested in technology, of all ages and abilities. Ask questions and learn about programming.

06. Manchester Raspberry Jam
Saturday 8 February
The Shed, Manchester, UK
magpi.cc/hyNWr8
A monthly user group where attendees can take part in taught workshops or get help working on their own projects.

07. South Devon Tech Jam
Saturday 8 February
Paignton Library and Information Centre, Paignton, UK
magpi.cc/9vhGQ5
A monthly informal and friendly session for anyone interested in technology, regardless of age or ability.

08. Birthday Jams!
Saturday 29 February
Earth, Sol System, Milky Way
rpf.io/jam
Raspberry Pi turns eight this year! To celebrate, there will be Jams around the world for a month! See page 84 for more.

FULL CALENDAR
Get a full list of upcoming events for February and beyond here:
rpf.io/jam
When I ran my first Jam in 2012, you could only buy one Raspberry Pi at a time, and you had to wait about three months. The Jam was essentially the 30 people in Manchester who were lucky enough to buy one on day one! Following that, more people managed to get hold of a Raspberry Pi. It wasn’t a problem that the Jam had no kit of its own: people were expected to bring their own. They were happy working on their own personal projects, and getting help from each other.”

Ben Nuttall – Manchester Raspberry Jam

Every Raspberry Jam is entitled to apply for a Jam starter kit, which includes magazine issues, printed worksheets, stickers, flyers, and more. Get the book here: rpf.io/guidebook
Retro Gaming with Raspberry Pi shows you how to set up a Raspberry Pi to play classic games. Build your own portable console, full-size arcade cabinet, and pinball machine with our step-by-step guides. And learn how to program your own games, using Python and Pygame Zero.

- Set up your Raspberry Pi for retro gaming
- Emulate classic computers and consoles
- Learn to program retro-style games
- Build a portable console, arcade cabinet, and pinball machine

BUY ONLINE: magpi.cc/store
51st tip

Great issue [Ed – in reference to issue 89, magpi.cc/89]: I particularly like Dale’s Scratch tutorial on p44. Referring to your tips feature on p26 – one thing I find really handy is something that insulates. I was told to use clear nail varnish. Is this the best form of insulator or can you recommend something else?

Anne via email

Using clear nail varnish is not something we’ve heard before, but apparently it is completely real as a valid non-conductive insulator. It seems a few folks like to use flat colours like red and black for colour-coding if they need it as well. We reckon if you want to really do something fancy, check out UV varnish.

As for other insulators, we like to heat up a glue gun and use the low setting to cover anything that might short. It’s especially effective for costume electronics, as it helps to keep wires attached if they’re moving more than they should.
We love to see some of the amazing projects that come out of Coolest Projects events!

Coolest Projects registration

I read a couple issues ago that registration for the American and UK versions of Coolest Projects was open, but registration for the International one wasn’t yet. I assume it’s because it’s a bit later in the year, but do you have any idea when we might learn news of its opening?

Serg via Facebook

You’re in luck – Coolest Projects International registration opened just before we went to print! It’s being held in Dublin on 6 June, and it’s available for everyone around the world. If you want to check out more about Coolest Projects, and register for the International event, head here: coolestprojects.org/international.

Power supply upgrade

I’m thinking of upgrading to a Raspberry Pi 4 this year and was wondering what accessories I’d also need to upgrade to use it properly. I’m currently using a Raspberry Pi 3B, and have all the standard kit for that. I know I’ll need a new case and a micro HDMI cable, but otherwise am I good to go? I know that sometimes a power supply upgrade is needed, will I need a new PSU?

Jon via email

The power port of Raspberry Pi 4 is USB-C, while older Raspberry Pi models use micro USB 2.0, so you will need some kind of upgrade to your power solution.

Now, you don’t necessarily need to get a USB-C charger – you can get a micro USB to USB-C adapter if your current power supply is powerful enough. If it’s about 3A or higher, you should be OK.

Otherwise, if you’ve got a new Android phone over the last year or so, you may already have a USB-C PSU. These are generally powerful enough to run Raspberry Pi 4 with few issues. Of course, if you don’t have a charger, you can grab the official power supply.

The official Raspberry Pi 4 power supply is a great charger for USB-C devices.
WIN ONE OF FIVE PROTODOCK ADD-ONS!

Sometimes you have just a few too many components, microSD cards, and other gizmos for your Raspberry Pi projects. The ProtoDock helps you organise them.

The ProtoDock keeps your desk tidy and all of your vital Raspberry Pi accessories in one place.

Head here to enter: magpi.cc/win

Learn more: magpi.cc/protodock

Terms & Conditions
Competition opens on 29 January 2020 and closes on 27 February 2020. Prize is offered to participants worldwide aged 13 or over, except employees of the Raspberry Pi Foundation, the prize supplier, their families, or friends. Winners will be notified by email no more than 30 days after the competition closes. By entering the competition, the winner consents to any publicity generated from the competition, in print and online. Participants agree to receive occasional newsletters from The MagPi magazine. We don’t like spam: participants’ details will remain strictly confidential and won’t be shared with third parties. Prizes are non-negotiable and no cash alternative will be offered. Winners will be contacted by email to arrange delivery. Any winners who have not responded 60 days after the initial email is sent will have their prize revoked. This promotion is in no way sponsored, endorsed or administered by, or associated with, Instagram or Facebook.
DON'T MISS OUT!

magpi.cc/subscribe

NEXT MONTH

Get ready to
Make & Share!

#MonthOfMaking

March 2020!

Plus!

Raspberry Pi
reaching robot

Build a portable
arcade machine

Detect motion with
Raspberry Shake

The MagPi #91

On Sale 27 February
As all my friends can testify: I love DIY. Give me a drill and a wall to damage and I’m a happy gal.

And my DIY cup runneth over, since I recently moved into a new house that our local plumber Naim cheerfully referred to as: “Oh my God Luce this place is a wreck, are you sure?”

The estate agents didn’t even say it had ‘character’. The brochure said, with a hopeful look, that our new home was “in need of cosmetic decoration” and presented a “fantastic opportunity to add value to a property”.

And add value I have! Day and night with drill, and hammer, and screwdriver. The cat hates me; carpets have come up, stairs have been pulled down, and with more than a little help from Naim, a new kitchen has magically appeared.

And all this DIY has got me thinking about Raspberry Pi.

How does it work?

Raspberry Pi is – above all else – the do-it-yourself of computing platforms. Not for us the glue and glass of the iPhone and the security screws of the Microsoft Surface. Oh no, we hold our computer in our hand and say out loud, “How do you work, then, little one?”

Sometimes we also say, “Why aren’t you working, you absolute rotter.” [We don’t swear in *The MagPi*, house rule – Ed.]

Doing-it-myself, or rather undoing the work of others to redo it, has given me an appreciation of good work. Good work can be taken apart, examined, understood, and reassembled.

Raspberry Pi is good work.

And I think doing-it-yourself is important. Because the alternative is somebody-else-does-it-for-you. And that comes at a heavy cost (and I don’t mean money). Somebody-else-does-it-for-you means they get to understand the world you live in. They get all the joy of a job well done; if something goes wrong, you need to call them and ask for help.

I want to live in a world that I understand. If something goes wrong, I know how to fix it, how to stop it getting worse, and at least where to look to solve the problem.

Do-it-yourself computing is important. In a world of locked-down devices and black-box artificial intelligence, do-it-yourself computing is a shield against superficiality. It helps you to take the modern world apart and get a grip on how it ticks.

It’s also good for the environment. Learn to make something and you can fix and repair it, improve it, and gain an appreciation for the immediate world around you.

Sustainable devices

Repair is the new green, as iFixit says (magpi.cc/ifixitrepair). “Sustainable devices are devices that are designed to have a long life – and that means prioritising repair and upgradability. Devices that are easier to disassemble are also easier to recycle. Reusing, repairing, and recycling are always greener than manufacturing something anew.”

DIY – both in your computing and in your home – is good for the soul and good for the world. Long may it continue.

Author

Lucy Hattersley

Lucy is the editor of *The MagPi* and is doing it all just to get more space for a dog. A dog with a lot to live up to.
UniPiCase
for Raspberry Pi 4

Perfect option for your DIY or high-volume commercial projects

- Fits all kinds of HATs
- Ideal PoE HAT case
- Use with HAT or Pi alone
- Simple and professional
- Rapid, tool-free assembly
- GPIO cable pass-through
- Two wall mount options
- Well ventilated

www.UniPiCase.com

Designed and manufactured in North America
INSPIRE FUTURE GENERATIONS
WITH PIPER COMPUTER KIT 2
the award-winning computer kit for ages 8+

Find out more about this and many other products at www.okdo.com